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Research Background

• Human pose: 3D positions of
human joints (e.g. wrist, elbow,
shoulder, knee, ankle)

• Motion forecasting: predict future
human poses from historical poses

Human pose
[Alexiadis TCSVT’16]
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Research Background

Applications of human motion forecasting

Wearable arm exosuit
[Lotti RAM’20]

Upper limb exoskeleton
[Zhang BSPC’19]
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Research Background

Applications of human motion forecasting

Human-robot collaboration
[Landi IRS’19]

Human-robot collaboration
[Le RHIC’21]
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Research Background

Applications of human motion forecasting

Human-human and human-robot interaction
[Duarte RAL’18] 5



Motivation

Eye-body coordination

• Eye-head coordination [Hu TVCG’19; Hu TVCG’20; Hu TVCG’21]
• Eye-hand-head coordination [Emery ETRA’21]
• Eye-head-torso coordination [Sidenmark ToCHI’19]

Eye and body movements in daily pick and place activities

Use eye gaze information to guide human motion forecasting
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Contributions

• A novel method that first predicts future eye gaze from past
gaze and then forecasts future poses using the predicted
gaze and past poses through a spatio-temporal GCN

• Experiments on three public datasets that demonstrate
significant performance improvements over prior methods

• A user study that validates our method outperforms prior
methods in both precision and realism
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Related Work

Res-RNN: residual recurrent neural network

• Sequence-to-sequence architecture
• Residual architecture

[Martinez CVPR’17]
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Related Work

siMLPe: simple multi-layer perceptrons

• Fully connected layers, layer normalisation, and transpose
operations

• Residual architecture

[Guo WACV’23]
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Related Work

HisRep: human motion forecasting via motion attention

• Sequence-to-sequence architecture
• Attention-based architecture

[Mao ECCV’20]
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Related Work

PGBIG: progressively generating better initial guesses

• Multi-stage human motion forecasting framework
• Spatial and temporal dense graph convolutional networks

[Ma CVPR’22]

12



Related Work

Traditional methods

• Predict future poses from historical poses

Our method

• Predict future eye gaze from historical gaze
• Predict future poses from past poses and the predicted gaze
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Method

GazeMotion method

• Eye gaze prediction
• Gaze-pose fusion
• Motion forecasting
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Method

GazeMotion method: Eye gaze prediction

• 1D convolutional neural network
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Method

GazeMotion method: Gaze-pose fusion

• Treat eye gaze and body joints as nodes in a graph
• Fully-connected spatio-temporal graph
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Method

GazeMotion method: Motion forecasting

• Spatio-temporal graph convolutional network
• Start module, residual module, end module
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Results

Evaluation settings

• Datasets: MoGaze [Kratzer RAL’20], ADT [Pan ICCV’23], GIMO
[Zheng ECCV’22]

• Metric: mean per joint position error (MPJPE)
• Input: 10 frames in the past
• Output: 30 frames in the future
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Results

Motion forecasting performance

Dataset Method 200 ms 400 ms 600 ms 800 ms 1000 ms Average

MoGaze

Res-RNN [Martinez CVPR’17] 53.1 91.3 136.8 187.5 240.8 124.3
siMLPe [Guo WACV’23] 40.6 72.0 108.8 152.6 201.0 99.5
HisRep [Mao ECCV’20] 31.4 60.5 95.4 135.3 177.9 85.3
PGBIG [Ma CVPR’22] 29.4 57.7 92.0 130.7 171.5 82.0
Ours w/o gaze 27.2 55.3 88.9 126.9 167.1 79.0

Ours 25.8 53.3 85.8 122.0 160.0 75.9

ADT

Res-RNN [Martinez CVPR’17] 35.6 55.7 77.8 100.0 122.5 70.1
siMLPe [Guo WACV’23] 29.9 48.3 69.1 93.8 120.7 63.8
HisRep [Mao ECCV’20] 15.5 30.5 47.6 66.8 88.2 42.3
PGBIG [Ma CVPR’22] 14.5 28.7 45.4 64.4 85.8 40.6
Ours w/o gaze 12.0 26.6 44.0 63.8 85.3 39.1

Ours 11.7 25.8 42.8 62.1 82.8 38.0

GIMO

Res-RNN [Martinez CVPR’17] 82.6 126.4 170.2 212.9 255.4 152.8
siMLPe [Guo WACV’23] 42.8 78.3 114.6 150.7 188.5 100.3
HisRep [Mao ECCV’20] 41.8 78.1 115.0 152.7 192.4 100.2
PGBIG [Ma CVPR’22] 38.0 68.6 101.9 136.1 172.2 89.2
Ours w/o gaze 33.7 66.1 99.7 134.4 170.4 86.8

Ours 32.6 64.1 97.0 130.0 162.4 83.8

Our method (Ours and Ours w/o gaze) consistently
outperforms prior methods at different time intervals
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Results

Motion forecasting performance
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Results

Ablation study

Method 200 ms 400 ms 600 ms 800 ms 1000 ms Average
w/o spatial GCN 30.9 62.1 96.3 133.8 173.1 84.7
w/o temporal GCN 46.6 74.0 107.9 147.0 188.0 99.3

w/o gaze 27.2 55.3 88.9 126.9 167.1 79.0
past gaze 26.3 54.3 87.2 123.8 162.0 77.1
Ours 25.8 53.3 85.8 122.0 160.0 75.9

Our method consistently outperforms the ablated versions
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Results

User study

• Stimuli: 24 randomly selected motion forecasting samples
• Participants: 20 users (12 males and 8 females)
• Procedure: rank different methods according to precision
(align with the ground truth) and realism (physically
plausible)
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Results

User study

Ours PGBIG HisRep siMLPe Res-RNN

Precision
Mean 1.6 3.2 3.2 3.3 3.7
SD 0.9 1.2 1.2 1.3 1.3

Realism
Mean 1.9 3.3 3.1 3.3 3.5
SD 1.3 1.2 1.3 1.3 1.4

Our method outperforms prior methods in terms of both
precision and realism
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Discussion

Limitations

• Long-term motion forecasting performances are not as good
as short-term performances

• Ignore the stochastic nature of human motions
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Discussion

Future work

• Integrate more context information such as user’s goal or
task into human motion forecasting

• Explore other important body signals such as hand gestures
for motion forecasting

• Integrate our method into motion-related applications such
as assistive devices
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Conclusion

Main contributions

• A novel method consisting of three components: eye gaze
prediction, gaze-pose fusion, and motion forecasting

• Experiments on three public datasets that demonstrate the
superiority of our method over prior methods

• A user study that validates the precision and realism of our
predictions

Code available at zhiminghu.net/hu24_gazemotion 
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