

Related Work

Method

Results

Discussion

Conclusion

- Human pose: 3D positions of human joints (e.g. wrist, elbow, shoulder, knee, ankle)
- Motion forecasting: predict future human poses from historical poses

Human pose [Alexiadis TCSVT'16]

Applications of human motion forecasting

Wearable arm exosuit [Lotti RAM'20]

Upper limb exoskeleton [Zhang BSPC'19]

Applications of human motion forecasting

Human-robot collaboration [Landi IRS'19] Human-robot collaboration [Le RHIC'21]

Applications of human motion forecasting

Human-human and human-robot interaction [Duarte RAL'18]

Eye-body coordination

- Eye-head coordination [Hu TVCG'19; Hu TVCG'20; Hu TVCG'21]
- Eye-hand-head coordination [Emery ETRA'21]
- Eye-head-torso coordination [Sidenmark ToCHI'19]

Eye and body movements in daily pick and place activities

Use eye gaze information to guide human motion forecasting

- A novel method that first **predicts future eye gaze from past gaze** and then **forecasts future poses** using the predicted gaze and past poses through a **spatio-temporal GCN**
- Experiments on three public datasets that demonstrate significant performance improvements over prior methods
- A **user study** that validates our method **outperforms** prior methods in both **precision** and **realism**

Related Work

Method

Results

Discussion

Conclusion

Related Work

Res-RNN: residual recurrent neural network

- Sequence-to-sequence architecture
- Residual architecture

[Martinez CVPR'17]

siMLPe: simple multi-layer perceptrons

- Fully connected layers, layer normalisation, and transpose operations
- Residual architecture

[Guo WACV'23]

Related Work

HisRep: human motion forecasting via motion attention

- Sequence-to-sequence architecture
- Attention-based architecture

[Mao ECCV'20]

Related Work

PGBIG: progressively generating better initial guesses

- Multi-stage human motion forecasting framework
- Spatial and temporal dense graph convolutional networks

[Ma CVPR'22]

Traditional methods

• Predict future poses from historical poses

Our method

- Predict future eye gaze from historical gaze
- $\cdot\,$ Predict future poses from past poses and the predicted gaze

Related Work

Method

Results

Discussion

Conclusion

Method

GazeMotion method

- Eye gaze prediction
- Gaze-pose fusion
- Motion forecasting

GazeMotion method: Eye gaze prediction

• 1D convolutional neural network

Method

GazeMotion method: Gaze-pose fusion

- Treat eye gaze and body joints as **nodes** in a graph
- Fully-connected spatio-temporal graph

Method

GazeMotion method: Motion forecasting

- Spatio-temporal graph convolutional network
- Start module, residual module, end module

Related Work

Method

Results

Discussion

Conclusion

Evaluation settings

- Datasets: MoGaze [Kratzer RAL'20], ADT [Pan ICCV'23], GIMO [Zheng ECCV'22]
- Metric: mean per joint position error (MPJPE)
- Input: 10 frames in the past
- Output: 30 frames in the future

Motion forecasting performance

Dataset	Method	200 ms	400 ms	600 ms	800 ms	1000 ms	Average
	Res-RNN [Martinez CVPR'17]	53.1	91.3	136.8	187.5	240.8	124.3
MoGaze	siMLPe [Guo WACV'23]	40.6	72.0	108.8	152.6	201.0	99.5
	HisRep [Mao ECCV'20]	31.4	60.5	95.4	135.3	177.9	85.3
	PGBIG [Ma CVPR'22]	29.4	57.7	92.0	130.7	171.5	82.0
	Ours w/o gaze	27.2	<u>55.3</u>	88.9	<u>126.9</u>	<u>167.1</u>	79.0
	Ours	25.8	53.3	85.8	122.0	160.0	75.9
ADT	Res-RNN [Martinez CVPR'17]	35.6	55.7	77.8	100.0	122.5	70.1
	siMLPe [Guo WACV'23]	29.9	48.3	69.1	93.8	120.7	63.8
	HisRep [Mao ECCV'20]	15.5	30.5	47.6	66.8	88.2	42.3
ADT	PGBIG [Ma CVPR'22]	14.5	28.7	45.4	64.4	85.8	40.6
	Ours w/o gaze	<u>12.0</u>	26.6	44.0	<u>63.8</u>	85.3	39.1
	Ours	11.7	25.8	42.8	62.1	82.8	38.0
GIMO	Res-RNN [Martinez CVPR'17]	82.6	126.4	170.2	212.9	255.4	152.8
	siMLPe [Guo WACV'23]	42.8	78.3	114.6	150.7	188.5	100.3
	HisRep [Mao ECCV'20]	41.8	78.1	115.0	152.7	192.4	100.2
	PGBIG [Ma CVPR'22]	38.0	68.6	101.9	136.1	172.2	89.2
	Ours w/o gaze	33.7	66.1	<u>99.7</u>	134.4	170.4	86.8
	Ours	32.6	64.1	97.0	130.0	162.4	83.8

Our method (Ours and Ours w/o *gaze*) **consistently outperforms** prior methods at different time intervals

Motion forecasting performance

Ablation study

Method	200 ms	400 ms	600 ms	800 ms	1000 ms	Average
w/o spatial GCN	30.9	62.1	96.3	133.8	173.1	84.7
w/o temporal GCN	46.6	74.0	107.9	147.0	188.0	99.3
w/o gaze	27.2	55.3	88.9	126.9	167.1	79.0
past gaze	26.3	54.3	87.2	123.8	162.0	77.1
Ours	25.8	53.3	85.8	122.0	160.0	75.9

Our method consistently outperforms the ablated versions

User study

- Stimuli: 24 randomly selected motion forecasting samples
- Participants: 20 users (12 males and 8 females)
- Procedure: rank different methods according to *precision* (*align with the ground truth*) and *realism* (*physically plausible*)

User study

		Ours	PGBIG	HisRep	siMLPe	Res-RNN
Dracicion	Mean	1.6	3.2	3.2	3.3	3.7
PIECISION	SD	0.9	1.2	1.2	1.3	1.3
Pooliem	Mean	1.9	3.3	<u>3.1</u>	3.3	3.5
Reulisiii	SD	1.3	1.2	1.3	1.3	1.4

Our method outperforms prior methods in terms of both *precision* and *realism*

Related Work

Method

Results

Discussion

Conclusion

Limitations

- Long-term motion forecasting performances are not as good as short-term performances
- Ignore the **stochastic nature** of human motions

Future work

- Integrate more **context** information such as user's **goal** or **task** into human motion forecasting
- Explore other important body signals such as **hand gestures** for motion forecasting
- Integrate our method into motion-related applications such as **assistive devices**

Related Work

Method

Results

Discussion

Conclusion

Main contributions

- A novel method consisting of three components: **eye gaze prediction**, **gaze-pose fusion**, and **motion forecasting**
- Experiments on three public datasets that demonstrate the superiority of our method over prior methods
- A **user study** that validates the **precision** and **realism** of our predictions

Code available at zhiminghu.net/hu24_gazemotion @

Thank you!

References i

- Alexiadis TCSVT'16. An integrated platform for live 3d human reconstruction and motion capturing. *IEEE Transactions on Circuits and Systems for Video Technology*, 27(4):798–813, 2016.
- Duarte RAL'18. Action anticipation: Reading the intentions of humans and robots. *IEEE Robotics and Automation Letters*, 3(4):4132–4139, 2018.
- Emery ETRA'21. Openneeds: A dataset of gaze, head, hand, and scene signals during exploration in open-ended vr environments. In *Proceedings of the 2021 ACM Symposium on Eye Tracking Research and Applications*, pages 1–7, 2021.
- Guo WACV'23. Back to mlp: A simple baseline for human motion prediction. In Proceedings of the 2023 IEEE Winter Conference on Applications of Computer Vision, pages 4809–4819, 2023.
- Hu TVCG'19. Sgaze: a data-driven eye-head coordination model for realtime gaze prediction. *IEEE Transactions on Visualization and Computer Graphics*, 25(5):2002–2010, 2019.
- Hu TVCG'20. Dgaze: Cnn-based gaze prediction in dynamic scenes. *IEEE Transactions on Visualization and Computer* Graphics, 26(5):1902–1911, 2020.
- Hu TVCG'21. Fixationnet: forecasting eye fixations in task-oriented virtual environments. *IEEE Transactions on Visualization and Computer Graphics*, 27(5):2681–2690, 2021.
- Kratzer RAL'20. Mogaze: A dataset of full-body motions that includes workspace geometry and eye-gaze. IEEE Robotics and Automation Letters, 6(2):367–373, 2020.
- Landi IRS'19. Prediction of human arm target for robot reaching movements. In Proceedings of the 2019 IEEE International Conference on Intelligent Robots and Systems, pages 5950–5957. IEEE, 2019.

References ii

- Le RHIC'21. Hierarchical human-motion prediction and logic-geometric programming for minimal interference human-robot tasks. In Proceedings of the 2021 IEEE International Conference on Robot and Human Interactive Communication, pages 7–14. IEEE, 2021.
- Lotti RAM'20. Adaptive model-based myoelectric control for a soft wearable arm exosuit: A new generation of wearable robot control. *IEEE Robotics and Automation Magazine*, 27(1):43–53, 2020.
- Ma CVPR'22. Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In *Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition*, pages 6437–6446, 2022.
- Mao ECCV'20. History repeats itself: Human motion prediction via motion attention. In Proceedings of the 2020 European Conference on Computer Vision, pages 474–489. Springer, 2020.
- Martinez CVPR'17. On human motion prediction using recurrent neural networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages 2891–2900, 2017.
- Pan ICCV'23. Aria digital twin: A new benchmark dataset for egocentric 3d machine perception. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 20133–20143, 2023.
- Sidenmark ToCHI'19. Eye, head and torso coordination during gaze shifts in virtual reality. ACM Transactions on Computer-Human Interaction, 27(1):1–40, 2019.
- Zhang BSPC'19. An upper limb movement estimation from electromyography by using bp neural network. Biomedical Signal Processing and Control, 49:434–439, 2019.
- Zheng ECCV'22. Gimo: Gaze-informed human motion prediction in context. In Proceedings of the 2022 European Conference on Computer Vision, 2022.

