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Research Background

Applications of human motion forecasting

Human-agent collaboration
[Le RHIC'21]



Research Background

Applications of human motion forecasting
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Redirected walking in XR environments
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Applications of human motion forecasting

Low-latency and precise interaction in XR
[Belardinelli IROS'22]



Research Background

Applications of human motion forecasting

Safe and comfortable interaction in XR
[Zhang ECCV'22]



Coordination of human body motion and scene environment

Human body movements in daily pick and place activities

Use scene object information to guide human motion
forecasting



Contributions

- Demonstrate the effectiveness of egocentric 3D object
bounding boxes for human motion forecasting

- Propose a novel GCN-based method to forecast human
motions from body pose and egocentric object features

- Conduct extensive experiments on two public datasets and
report a user study to show the superiority of our method
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Related Work

Res-RNN: residual recurrent neural network

- Sequence-to-sequence architecture
- Residual architecture

| Linear |

GRU

[Martinez CVPR'17]
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Related Work

siMLPe: simple multi-layer perceptrons

- Fully connected layers, layer normalisation, and transpose
operations
- Residual architecture
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Related Work

HisRep: human motion prediction via motion attention

- Sequence-to-sequence architecture
- Attention-based architecture

Motion Attention
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Related Work

PGBIG: progressively generating better initial guesses

- Multi-stage human motion prediction framework
- Spatial and temporal dense graph convolutional networks
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Related Work

Traditional methods
- Predict future poses from historical poses
Our method

- Extract features from scene objects

- Predict future poses from past pose and scene object
features
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Problem formulation

- Daily human-object interaction activities

- Use egocentric 3D object bounding boxes to forecast human
motion
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HOIMotion method

- Pose-object feature extraction
- Pose-object fusion
- Motion forecasting

Dynamic Object Bounding Boxes

Encoder GCN

Past Poses
<

Head Orientations

Future Poses

Static Object Bounding Boxes



HOIMotion method: Pose-object feature extraction

- Past poses, head orientations, static and dynamic objects
- DCT, spatio-temporal GCN, and MLP

Dynamic Object Bounding Boxes
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HOIMotion method: Pose-object fusion

- Treat scene objects and body joints as nodes in a graph
- Fully-connected spatio-temporal graph

Dynamic Object Bounding Boxes
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HOIMotion method: Motion forecasting

- Spatio-temporal GCN

- Fuse residual GCN and decoder GCN
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Evaluation settings

- Datasets: ADT [Pan ICCV'23] and MoGaze [Kratzer RAL'20]
- Metric: mean per joint position error (MPJPE)

- Input: 10 frames in the past

- Output: 30 frames in the future
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Results

Motion forecasting performance

Dataset Method 100ms 200ms 300ms 400ms 500ms 600ms 700ms 800ms 900 ms 1000 ms Average
Res-RNN [Martinez CVPR'17] 237 339 44.8 56.8 68.6 80.8 93.1 105.7 1183 1311 723
SiMLPe [Guo WACV'23] 26.6 30.4 37.8 46.8 575 68.2 79.7 925 1053 1195 632
ADT HisRep [Mao ECCV'20] 83 15.4 226 30.2 384 47.2 56.6 66.6 76.8 87.8 42.0
PGBIG [Ma CVPR'22] 89 155 224 296 374 46.0 55.0 64.7 75.0 86.2 413
Ours pose only 58 119 188 264 348 439 536 639 747 858 391
Ours 55 11.4 18.1 25.6 337 42.5 52.0 618 72.0 82.5 37.7
Res-RNN [Martinez CVPR'17] 385 53.1 711 913 1132 1368 1617 1875 2140 240.8 1243
siMLPe [Guo WACV'23] 288 406 555 720 89.4 108.8 130.2 1526 1763 201.0 99.5
MoGaze HisRep [Mao ECCV'20] 17.1 314 45.4 60.5 77.1 95.4 1150 1353 156.4 1779 853
PGBIG [Ma CVPR'22] 16.0 294 43.0 57.7 741 920 1108 130.7 151.1 1715 82.0
Ours pose only 143 269 40.4 55.0 712 888 1075 1269 1470 1673 790
Ours 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1

Our method (Ours and Ours pose only) consistently
outperforms prior methods at different time intervals
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Results

Ablation study

Method 100ms 200ms 300ms 400ms 500ms 600ms 700ms 800ms 900 ms 1000 ms Average
w/o static 13.8 263 39.7 543 702 87.2 105.3 1241 1434 1626 773
w/o dynamic 138 262 39.6 54.1 69.9 86.9 105.0 1239 143.2 162.4 771
w/o static+dynamic 139 26.6 40.0 545 705 87.8 106.0 1249 1443 1639 778
w/o head 13.7 262 39.5 54.2 70.1 872 105.2 1241 143.6 163.0 772
w/o static+dynamic+head 143 269 40.4 55.0 712 88.8 107.5 126.9 147.0 167.3 79.0
Ours 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1

Our method significantly outperforms the ablated versions
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User study

- Stimuli: 20 randomly selected motion forecasting samples
- Participants: 20 users (10 males and 10 females)

- Procedure: rank different methods according to precision
(align with the ground truth) and realism (physically
plausible)
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User study
Ours PGBIG [Ma CVPR'22]  HisRep [Mao ECCV'20]

Median 1.0 2.0 3.0

Precision  Mean 1.2 2.3 2.5

SD 0.5 0.6 0.6

Median 1.0 2.0 2.0

Realism Mean 13 2.2 2.3

SD 0.6 0.7 0.7

Our method outperforms prior methods in terms of both
precision and realism
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Discussion

Limitations

- Long-term motion forecasting performances are not as good
as short-term performances

- Designed for human-object interactions and may not work
well for human-human interactions
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Discussion

Future work

- Explore other scene object-related information such as
object shape for human motion forecasting

- Add some physical constraints for the predicted human
poses to make them more physically plausible

- Integrate our method into motion-related applications such
as redirected walking and human-agent collaboration
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Conclusion

Main contributions

- Validate the effectiveness of egocentric 3D object bounding
boxes for human motion forecasting

- Propose a novel method consisting of three components:
pose-object feature extraction, pose-object fusion, and
motion forecasting

- Demonstrate the superiority of our method through
experiments on two public datasets and a user study

Code available at zhiminghu.net/hu24_hoimotion =
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