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Education Background & Academic Positions

Education Background

• Ph.D. in Computer Software and Theory 2017.09-2022.07
Peking University, Supervised by Prof. Guoping Wang

• B.Eng. in Optical Engineering 2013.09-2017.07
Beijing Institute of Technology

Academic Positions

• Post-doctoral Researcher 2022.08-now
University of Stuttgart, Led by Prof. Andreas Bulling & Prof.
Syn Schmitt
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Awards & Honours

As a researcher:

• Best Doctoral Student Paper Award Nominees at INTERACT 2023
• TVCG Best Journal Award Nominees at IEEE VR 2021 (top 2%, first
time for Chinese researchers)

As a student:

• National Scholarship (top 2%), 2021
• CSC (China Scholarship Council) Scholarship, 2020
• Chancellor’s Scholarship (top 2%), 2020
• Leo KoGuan Scholarship (top 5%), 2019
• Leader Scholarship (top 0.2%, 7 out of over 3800 students), 2017
• National Scholarship (top 2%), 2016
• National Scholarship (top 2%), 2014
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Professional Activities

Reviewing

• Journals: IMWUT, TiiS, T-MM, TVCG, IJHCI, MTAP
• Conferences: SIGGRAPH Asia, CVPR, ICCV, ECCV, CHI, UIST, IEEE
VR, ISMAR

Organising committee

• Virtualisation Chair for ETRA 2024
• Associate Chair for MuC 2023
• Technical Program Committee member for iWOAR 2023
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Research Interests

• Human-computer interaction

• Virtual reality

• Eye tracking

• Human-centred artificial intelligence

Research goal
Develop human-aware intelligent user interfaces that can
accurately model human daily behaviours
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Research Goal

Towards Human-aware Intelligent User Interfaces

• Human behaviour estimation and prediction
How to acquire human behaviour data?

• Computational human activity analysis
What can we learn from human data?

• Human-aware intelligent system
How to enhance the system’s intelligence using human data?

7



Research Goal

Towards Human-aware Intelligent User Interfaces

• Human behaviour estimation and prediction
• Computational human activity analysis
• Human-aware intelligent system

Human daily pick and place actions
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Human Behaviour Estimation and Prediction

• Head pose-based gaze estimation

• Task-oriented gaze prediction

• Privacy-preserving gaze estimation

• Gaze super-resolution
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Head Pose-based Gaze Estimation

Problem definition

• Input: head pose + scene content
• Output: gaze position

Static virtual environments [Hu TVCG’19]
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Head Pose-based Gaze Estimation

SGaze: An Eye-head Coordination Model for Gaze Prediction

x̃g =αx · ṽhx(t+∆tx) + βx · ahx + bx · xS + cx
ỹg =αy · ṽhy(t+∆ty) + by · yS + cy

x̃g, ỹg: predicted eye gaze
ṽhx, ṽhy: head velocity
∆tx, ∆ty: time interval between gaze and head
ahx: horizontal head acceleration
xS, yS: salient positions
αx, αy, βx, bx, by, cx, cy: learned parameters

[Hu TVCG’19]
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Head Pose-based Gaze Estimation

Problem definition

• Input: head pose + scene content + dynamic objects
• Output: gaze position

Dynamic virtual environments [Hu TVCG’20]
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Head Pose-based Gaze Estimation

DGaze: CNN-based Gaze Prediction in Dynamic Scenes

• Gaze estimation using VR content, and head movements
• Gaze forecasting using past gaze positions
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[Hu TVCG’20]
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Task-oriented Gaze Prediction

Problem definition

• Input: head pose + scene content + task-related information
• Output: future gaze fixation

Task-oriented virtual environments [Hu TVCG’21]
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Task-oriented Gaze Prediction

FixationNet: Gaze Forecasting in Task-oriented Environments

• Extract features from VR content, past gaze and head data
• Forecast fixation using prior knowledge of gaze distribution
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Privacy-preserving Gaze Estimation

Background

• Gaze estimation from face or eye images
• Face or eye images are privacy-sensitive

Problem definition

• Enhance the privacy of appearance-based gaze estimators

Appearance-based gaze estimation [Zhang PAMI’17]
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Privacy-preserving Gaze Estimation

Privacy-preserving Gaze Estimation using Federated Learning

• Local training to preserve privacy
• Global aggregation to ensure accuracy

Federated learning for appearance-based gaze estimation [Elfares NeurIPS GMML’22] 18



Gaze Super-resolution

Background

• Mobile eye trackers usually suffer from low-resolution
• High-resolution gaze data is significant for many applications

Problem definition

• Input: low(er)-resolution gaze data
• Output: high(er)-resolution gaze data

Mobile eye tracker [https://pupil-labs.com/products/core]
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Gaze Super-resolution

SUPREYES: SUPer Resolution for EYES

• Implicit neural representation learning
• Global feature extraction and local query
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[Jiao UIST’23]
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Human Behaviour Estimation and Prediction

Summary

• Head pose-based gaze estimation
• Task-oriented gaze prediction
• Privacy-preserving gaze estimation
• Gaze super-resolution

Future work

• Human pose estimation
• Human motion prediction
• Hand pose estimation
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Computational Human Activity Analysis

• Eye and head movement analysis

• Mouse and keyboard behaviour analysis
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Eye and Head Movement Analysis

Problem definition

• Analyse eye and head movements under different tasks
• Recognise user tasks from eye and head features

360-degree VR videos [Hu TVCG’22] 24



Eye and Head Movement Analysis

EHTask: Task Recognition from Eye and Head Movements

• Extract features from eye and head movements
• Fuse eye and head features to recognise user tasks

User Task
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[Hu TVCG’22]
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Mouse and Keyboard Behaviour Analysis

Background

• Interactive behaviour is similar to natural language
• Can NLP methods be used to model interactive behaviour?
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[Zhang INTERACT’23 Best Student Paper Nominees]
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Mouse and Keyboard Behaviour Analysis

Modelling Interactive Behaviour using NLP Methods

• Byte pair encoding (BPE) to encode mouse and keyboard
behaviour

• Transformer to recognise user tasks
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[Zhang INTERACT’23 Best Student Paper Nominees]
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Computational Human Activity Analysis

Summary

• Eye and head movement analysis
• Mouse and keyboard behaviour analysis

Future work

• Human motion analysis
• Human interaction intention analysis
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Human-aware Intelligent System

• Gaze-contingent rendering system

• Head-assisted locomotion system
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Gaze-contingent Rendering System

Background

• Virtual reality system requires high refresh rate to ensure
user experience

• High refresh rate is computationally expensive

VR rendering [Hu TVCG’20] 31



Gaze-contingent Rendering System

Gaze Estimation for Gaze-contingent Rendering

• Estimate eye gaze in virtual environments
• Apply estimated eye gaze to gaze-contingent rendering

Gaze-contingent rendering [Hu TVCG’20]
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Head-assisted Locomotion System

Background

• Locomotion is important for exploring virtual environments
• Cybersickness happens during locomotion

Locomotion in VR [Lin TVCG’22]
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Head-assisted Locomotion System

Intentional Head Motion-assisted Locomotion

• Cybersickness is correlated with self-motion velocity
• Intentional head motion can reduce cybersickness

[Lin TVCG’22]
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Human-aware Intelligent System

Summary

• Gaze-contingent rendering system
• Head-assisted locomotion system

Future work

• Intention-aware adaptive system
• Low-friction predictive interface
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Conclusion

Towards Human-aware Intelligent User Interfaces

• Human behaviour estimation and prediction

• Computational human activity analysis

• Human-aware intelligent system
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Q & A

Any question?
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