Perceptual R o - University of Stuttgart
o Z¥PUlLn. Db sy, SimTech™ i tsorsuss
UNIVERSITAT

TUBINGEN

an Motion

IROS '24
ABU DHABI




Table of Contents

Research Background

e 1

IROS ‘24



Research Background
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- Human pose: 3D positions of ...-_—-.j,ts-,. walsT
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- Motion forecasting: predict future
human poses from historical poses
L ] ® © Rigid-body joints
Human pose
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Research Background

Applications of human motion forecasting

Wearable arm exosuit Upper limb exoskeleton
[Lotti RAM'20] [zhang BSPC'19]
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Research Background

Applications of human motion forecasting

Human-robot collaboration Human-robot collaboration
[Landi IRS"19] [Le RHIC21]
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Research Background

Applications of human motion forecasting

Human-human and human-robot interaction
[Duarte RAL18] iROS ‘24

~1 5



Eye-body coordination

- Eye-head coordination [Hu TVCG'19; Hu TVCG'20; Hu TVCG'21]
- Eye-hand-head coordination [Emery ETRA'21]
- Eye-head-torso coordination [Sidenmark ToCHI"19]

Eye and body movements in daily pick and place activities

Use eye gaze information to guide human motion forecasting
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Contributions

- A novel method that first predicts future eye gaze from past
gaze and then forecasts future poses using the predicted
gaze and past poses through a spatio-temporal GCN

- Experiments on three public datasets that demonstrate
significant performance improvements over prior methods

- A user study that validates our method outperforms prior
methods in both precision and realism
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Related Work

Res-RNN: residual recurrent neural network

- Sequence-to-sequence architecture
- Residual architecture

[Martinez CVPR'17]
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Related Work

siMLPe: simple multi-layer perceptrons

- Fully connected layers, layer normalisation, and transpose
operations
- Residual architecture
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[Guo WACV'23]
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Related Work

HisRep: human motion forecasting via motion attention

- Sequence-to-sequence architecture
- Attention-based architecture

Motion Attention

[Mao ECCV20]
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Motion Attention
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Related Work

PGBIG: progressively generating better initial guesses

- Multi-stage human motion forecasting framework
- Spatial and temporal dense graph convolutional networks

Intermediate Target Intermediate Target Ground Truth
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Related Work

Traditional methods
- Predict future poses from historical poses
Our method

- Predict future eye gaze from historical gaze
- Predict future poses from past poses and the predicted gaze
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GazeMotion method

- Eye gaze prediction
- Gaze-pose fusion
- Motion forecasting

Past Eye Gaze
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GazeMotion method: Eye gaze prediction

- 1D convolutional neural network

Past Eye Gaze
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GazeMotion method: Gaze-pose fusion

- Treat eye gaze and body joints as nodes in a graph
- Fully-connected spatio-temporal graph

Past Eye Gaze
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GazeMotion method: Motion forecasting

- Spatio-temporal graph convolutional network
- Start module, residual module, end module

Past Eye Gaze
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Evaluation settings

- Datasets: MoGaze [Kratzer RAL'20], ADT [Pan ICCV'23], GIMO
[Zheng ECCV'22]

- Metric: mean per joint position error (MPJPE)

- Input: 10 frames in the past

- Output: 30 frames in the future
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Results

Motion forecasting performance

Dataset Method 200 ms 400ms 600 ms 800 ms 1000 ms Average
Res-RNN [Martinez CVPR'17] 53.1 91.3 136.8 187.5 240.8 1243
siMLPe [Guo WACV'23] 40.6 72.0 108.8 152.6 201.0 99.5
MoGaze HisRep [Mao ECCV'20] 314 60.5 95.4 1353 177.9 85.3
PGBIG [Ma CVPR'22] 29.4 57.7 92.0 130.7 1715 82.0
Ours w/o gaze 272 553 88.9 1269 167.1 79.0
Ours 25.8 53.3 85.8 122.0 160.0 759
Res-RNN [Martinez CVPR'17] 35.6 55.7 77.8 100.0 1225 70.1
SiMLPe [Guo WACV'23] 29.9 483 69.1 938 120.7 63.8
ADT HisRep [Mao ECCV'20] 15.5 30.5 47.6 66.8 88.2 42.3
PGBIG [Ma CVPR'22] 145 287 45.4 64.4 85.8 40.6
Ours w/o gaze 12.0 26.6 440 63.8 853 391
Ours 11.7 25.8 42.8 62.1 82.8 38.0
Res-RNN [Martinez CVPR'17] 82.6 126.4 170.2 2129 255.4 152.8
siMLPe [Guo WACV'23] 42.8 783 1146 150.7 188.5 100.3
GIMO HisRep [Mao ECCV'20] 41.8 781 115.0 152.7 192.4 100.2
PGBIG [Ma CVPR22] 38.0 68.6 101.9 136.1 172.2 89.2
Ours w/o gaze 337 66.1 99.7 1344 170.4 86.8
Ours 32.6 64.1 97.0 130.0 162.4 83.8

Our method (Ours and Ours w/o gaze) consistently

outperforms prior methods at different time intervals 211
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Motion forecasting performance
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Ablation study

Method 200 ms 400 ms 600 ms 800ms 1000 ms Average
w/o spatial GCN 30.9 62.1 96.3 133.8 173.1 84.7
w/o temporal GCN 46.6 74.0 107.9 147.0 188.0 99.3

w/o gaze 27.2 553 88.9 126.9 167.1 79.0
past gaze 26.3 543 87.2 123.8 162.0 77.1
Ours 25.8 53.3 85.8 122.0 160.0 75.9

Our method consistently outperforms the ablated versions
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User study

- Stimuli: 24 randomly selected motion forecasting samples

- Participants: 20 users (12 males and 8 females)

- Procedure: rank different methods according to precision
(align with the ground truth) and realism (physically
plausible)

ool 24



User study

Ours PGBIG HisRep siMLPe Res-RNN
N Mean 16 3.2 3.2 33 3.7

Precision
SD 0.9 1.2 1.2 1.3 13
. Mean 1.9 3.3 3.1 3.3 3.5

Realism
SD 1.3 1.2 13 1.3 1.4

Our method outperforms prior methods in terms of both

precision and realism
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Discussion

Limitations

- Long-term motion forecasting performances are not as good
as short-term performances

- Ignore the stochastic nature of human motions
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Discussion

Future work

- Integrate more context information such as user’s goal or
task into human motion forecasting

- Explore other important body signals such as hand gestures
for motion forecasting

- Integrate our method into motion-related applications such
as assistive devices
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Conclusion

Main contributions

- A novel method consisting of three components: eye gaze
prediction, gaze-pose fusion, and motion forecasting

- Experiments on three public datasets that demonstrate the
superiority of our method over prior methods

- A user study that validates the precision and realism of our
predictions

Code available at zhiminghu.net/hu24_gazemotion =
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