

UNNERSITÄT

Zhiming Hu¹, Zheming Yin¹, Daniel Häufle^{3,4,2}, Syn Schmitt^{1,2}, Andreas Bulling^{1,2}

¹University of Stuttgart ²Bionic Intelligence Tuebingen Stuttgart

³Heidelberg University

⁴University of Tuebingen

Research Background

Related Work

Method

Results

Discussion

Conclusion

- Human pose: 3D positions of human joints (e.g. wrist, elbow, shoulder, knee, ankle)
- Motion forecasting: predict future human poses from historical poses

Human pose [Alexiadis TCSVT'16]

Human-agent collaboration [Le RHIC'21]

Low-latency and precise interaction in XR [Belardinelli IROS'22]

Safe and comfortable interaction in XR [Zhang ECCV'22]

Motivation

Coordination of human body motion and scene environment

Human body movements in daily pick and place activities

Use scene object information to guide human motion forecasting

- Demonstrate the effectiveness of **egocentric 3D object bounding boxes** for human motion forecasting
- Propose a novel GCN-based method to forecast human motions from body pose and egocentric object features
- Conduct extensive experiments on **two public datasets** and report a **user study** to show the **superiority** of our method

Research Background

Related Work

Method

Results

Discussion

Conclusion

Related Work

Res-RNN: residual recurrent neural network

- Sequence-to-sequence architecture
- Residual architecture

[Martinez CVPR'17]

siMLPe: simple multi-layer perceptrons

- Fully connected layers, layer normalisation, and transpose operations
- Residual architecture

[[]Guo WACV'23]

Related Work

HisRep: human motion prediction via motion attention

- Sequence-to-sequence architecture
- Attention-based architecture

[Mao ECCV'20]

Related Work

PGBIG: progressively generating better initial guesses

- Multi-stage human motion prediction framework
- Spatial and temporal dense graph convolutional networks

[Ma CVPR'22]

Traditional methods

• Predict future poses from historical poses

Our method

- Extract features from **scene objects**
- Predict future poses from **past pose and scene object** features

Research Background

Related Work

Method

Results

Discussion

Conclusion

Problem formulation

- Daily human-object interaction activities
- Use **egocentric 3D object bounding boxes** to forecast human motion

HOIMotion method

- Pose-object feature extraction
- Pose-object fusion
- Motion forecasting

HOIMotion method: Pose-object feature extraction

- Past poses, head orientations, static and dynamic objects ٠
- DCT, spatio-temporal GCN, and MLP •

Static Object Bounding Boxes

HOIMotion method: Pose-object fusion

- Treat scene objects and body joints as **nodes** in a graph
- Fully-connected spatio-temporal graph

Static Object Bounding Boxes

HOIMotion method: Motion forecasting

- Spatio-temporal GCN
- Fuse residual GCN and decoder GCN

Static Object Bounding Boxes

Research Background

Related Work

Method

Results

Discussion

Conclusion

Evaluation settings

- Datasets: ADT [Pan ICCV'23] and MoGaze [Kratzer RAL'20]
- Metric: mean per joint position error (MPJPE)
- Input: 10 frames in the past
- Output: 30 frames in the future

Motion forecasting performance

Dataset	Method	100 ms	200 ms	300 ms	400 ms	500 ms	600 ms	700 ms	800 ms	900 ms	1000 ms	Average
ADT	Res-RNN [Martinez CVPR'17]	23.7	33.9	44.8	56.8	68.6	80.8	93.1	105.7	118.3	131.1	72.3
	siMLPe [Guo WACV'23]	26.6	30.4	37.8	46.8	57.5	68.2	79.7	92.5	105.3	119.5	63.2
	HisRep [Mao ECCV'20]	8.3	15.4	22.6	30.2	38.4	47.2	56.6	66.6	76.8	87.8	42.0
	PGBIG [Ma CVPR'22]	8.9	15.5	22.4	29.6	37.4	46.0	55.0	64.7	75.0	86.2	41.3
	Ours pose only	5.8	11.9	18.8	26.4	34.8	43.9	53.6	<u>63.9</u>	74.7	85.8	39.1
	Ours	5.5	11.4	18.1	25.6	33.7	42.5	52.0	61.8	72.0	82.5	37.7
MoGaze	Res-RNN [Martinez CVPR'17]	38.5	53.1	71.1	91.3	113.2	136.8	161.7	187.5	214.0	240.8	124.3
	siMLPe [Guo WACV'23]	28.8	40.6	55.5	72.0	89.4	108.8	130.2	152.6	176.3	201.0	99.5
	HisRep [Mao ECCV'20]	17.1	31.4	45.4	60.5	77.1	95.4	115.0	135.3	156.4	177.9	85.3
	PGBIG [Ma CVPR'22]	16.0	29.4	43.0	57.7	74.1	92.0	110.8	130.7	151.1	171.5	82.0
	Ours pose only	14.3	26.9	40.4	55.0	71.2	88.8	107.5	126.9	147.0	167.3	79.0
	Ours	13.2	25.6	38.6	52.9	68.7	85.7	103.9	122.7	142.0	161.3	76.1

Our method (Ours and Ours *pose only*) **consistently outperforms** prior methods at different time intervals

Motion forecasting performance

Ablation study

Method	100 ms	200 ms	300 ms	400 ms	500 ms	600 ms	700 ms	800 ms	900 ms	1000 ms	Average
w/o static	13.8	26.3	39.7	54.3	70.2	87.2	105.3	124.1	143.4	162.6	77.3
w/o dynamic	13.8	26.2	39.6	54.1	69.9	86.9	105.0	123.9	143.2	162.4	77.1
w/o static+dynamic	13.9	26.6	40.0	54.5	70.5	87.8	106.0	124.9	144.3	163.9	77.8
w/o head	13.7	26.2	39.5	54.2	70.1	87.2	105.2	124.1	143.6	163.0	77.2
w/o static+dynamic+head	14.3	26.9	40.4	55.0	71.2	88.8	107.5	126.9	147.0	167.3	79.0
Ours	13.2	25.6	38.6	52.9	68.7	85.7	103.9	122.7	142.0	161.3	76.1

Our method significantly outperforms the ablated versions

Results

Ablation study

User study

- Stimuli: 20 randomly selected motion forecasting samples
- Participants: 20 users (10 males and 10 females)
- Procedure: rank different methods according to *precision* (*align with the ground truth*) and *realism* (*physically plausible*)

User study

		Ours	PGBIG [Ma CVPR'22]	HisRep [Mao ECCV'20]
	Median	1.0	2.0	3.0
Precision	Mean	1.2	2.3	2.5
	SD	0.5	0.6	0.6
	Median	1.0	2.0	2.0
Realism	Mean	1.3	2.2	2.3
	SD	0.6	0.7	0.7

Our method outperforms prior methods in terms of both *precision* and *realism*

Research Background

Related Work

Method

Results

Discussion

Conclusion

Limitations

- Long-term motion forecasting performances are not as good as short-term performances
- Designed for **human-object interactions** and may not work well for **human-human interactions**

Future work

- Explore other scene object-related information such as object shape for human motion forecasting
- Add some **physical constraints** for the predicted human poses to make them more **physically plausible**
- Integrate our method into motion-related applications such as redirected walking and human-agent collaboration

Research Background

Related Work

Method

Results

Discussion

Conclusion

Main contributions

- Validate the effectiveness of **egocentric 3D object bounding boxes** for human motion forecasting
- Propose a novel method consisting of three components: pose-object feature extraction, pose-object fusion, and motion forecasting
- Demonstrate the **superiority** of our method through experiments on **two public datasets** and a **user study**

Code available at zhiminghu.net/hu24_hoimotion @

Thank you!

References i

- Alexiadis TCSVT'16. An integrated platform for live 3d human reconstruction and motion capturing. *IEEE Transactions on Circuits and Systems for Video Technology*, 27(4):798–813, 2016.
- Belardinelli IROS'22. Intention estimation from gaze and motion features for human-robot shared-control object manipulation. In Proceedings of the 2022 IEEE International Conference on Intelligent Robots and Systems, pages 9806–9813. IEEE, 2022.
- Guo WACV'23. Back to mlp: A simple baseline for human motion prediction. In Proceedings of the 2023 IEEE Winter Conference on Applications of Computer Vision, pages 4809–4819, 2023.
- Kratzer RAL'20. Mogaze: A dataset of full-body motions that includes workspace geometry and eye-gaze. IEEE Robotics and Automation Letters, 6(2):367–373, 2020.
- Le RHIC'21. Hierarchical human-motion prediction and logic-geometric programming for minimal interference human-robot tasks. In Proceedings of the 2021 IEEE International Conference on Robot and Human Interactive Communication, pages 7–14. IEEE, 2021.
- Lin TVCG'22. Intentional head-motion assisted locomotion for reducing cybersickness. *IEEE Transactions on Visualization and Computer Graphics*, 2022.
- Ma CVPR'22. Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In *Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition*, pages 6437–6446, 2022.
- Mao ECCV'20. History repeats itself: Human motion prediction via motion attention. In Proceedings of the 2020 European Conference on Computer Vision, pages 474–489. Springer, 2020.
- Martinez CVPR'17. On human motion prediction using recurrent neural networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages 2891–2900, 2017.

- Pan ICCV'23. Aria digital twin: A new benchmark dataset for egocentric 3d machine perception. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 20133–20143, 2023.
- Zhang ECCV'22. Egobody: Human body shape, motion and social interactions from head-mounted devices. In Proceedings of the 2022 European Conference on Computer Vision, 2022.