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Research Background

• Human pose: 3D positions of
human joints (e.g. wrist, elbow,
shoulder, knee, ankle)

• Motion forecasting: predict future
human poses from historical poses

Human pose
[Alexiadis TCSVT’16]
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Research Background

Applications of human motion forecasting

Human-agent collaboration
[Le RHIC’21]
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Research Background

Applications of human motion forecasting

Redirected walking in XR environments
[Lin TVCG’22]
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Research Background

Applications of human motion forecasting

Low-latency and precise interaction in XR
[Belardinelli IROS’22]
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Research Background

Applications of human motion forecasting

Safe and comfortable interaction in XR
[Zhang ECCV’22]
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Motivation

Coordination of human body motion and scene environment

Human body movements in daily pick and place activities

Use scene object information to guide human motion
forecasting
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Contributions

• Demonstrate the effectiveness of egocentric 3D object
bounding boxes for human motion forecasting

• Propose a novel GCN-based method to forecast human
motions from body pose and egocentric object features

• Conduct extensive experiments on two public datasets and
report a user study to show the superiority of our method
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Related Work

Res-RNN: residual recurrent neural network

• Sequence-to-sequence architecture
• Residual architecture

[Martinez CVPR’17]
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Related Work

siMLPe: simple multi-layer perceptrons

• Fully connected layers, layer normalisation, and transpose
operations

• Residual architecture

[Guo WACV’23]
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Related Work

HisRep: human motion prediction via motion attention

• Sequence-to-sequence architecture
• Attention-based architecture

[Mao ECCV’20]

12



Related Work

PGBIG: progressively generating better initial guesses

• Multi-stage human motion prediction framework
• Spatial and temporal dense graph convolutional networks

[Ma CVPR’22]
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Related Work

Traditional methods

• Predict future poses from historical poses

Our method

• Extract features from scene objects
• Predict future poses from past pose and scene object
features
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Method

Problem formulation

• Daily human-object interaction activities
• Use egocentric 3D object bounding boxes to forecast human
motion

HOIMotion
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Method

HOIMotion method

• Pose-object feature extraction
• Pose-object fusion
• Motion forecasting

D
C

T

T-
G

C
N

S-
G

C
N

Encoder GCN

T-
G

C
N

Pose Residual GCN

LN
S-

G
C

N

Ta
nh

D
ro

po
ut

M
LP

Past Poses

Head Orientations

Dynamic Object Bounding Boxes

Static Object Bounding Boxes

Future Poses

× 8

Pose-object Graph

D
C

T

R
ep

ea
t

M
LP

D
C

T

R
ep

ea
t

ID
C

T

T-
G

C
N

S-
G

C
N

Decoder GCN

T-
G

C
N

Fuse Residual GCN

LN
S-

G
C

N

Ta
nh

D
ro

po
ut

× 16

M
LP

D
C

T

R
ep

ea
t

17



Method

HOIMotion method: Pose-object feature extraction

• Past poses, head orientations, static and dynamic objects
• DCT, spatio-temporal GCN, and MLP
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Method

HOIMotion method: Pose-object fusion

• Treat scene objects and body joints as nodes in a graph
• Fully-connected spatio-temporal graph
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Method

HOIMotion method: Motion forecasting

• Spatio-temporal GCN
• Fuse residual GCN and decoder GCN
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Results

Evaluation settings

• Datasets: ADT [Pan ICCV’23] and MoGaze [Kratzer RAL’20]
• Metric: mean per joint position error (MPJPE)
• Input: 10 frames in the past
• Output: 30 frames in the future
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Results

Motion forecasting performance

Dataset Method 100 ms 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 800 ms 900 ms 1000 ms Average

ADT

Res-RNN [Martinez CVPR’17] 23.7 33.9 44.8 56.8 68.6 80.8 93.1 105.7 118.3 131.1 72.3
siMLPe [Guo WACV’23] 26.6 30.4 37.8 46.8 57.5 68.2 79.7 92.5 105.3 119.5 63.2
HisRep [Mao ECCV’20] 8.3 15.4 22.6 30.2 38.4 47.2 56.6 66.6 76.8 87.8 42.0
PGBIG [Ma CVPR’22] 8.9 15.5 22.4 29.6 37.4 46.0 55.0 64.7 75.0 86.2 41.3
Ours pose only 5.8 11.9 18.8 26.4 34.8 43.9 53.6 63.9 74.7 85.8 39.1

Ours 5.5 11.4 18.1 25.6 33.7 42.5 52.0 61.8 72.0 82.5 37.7

MoGaze

Res-RNN [Martinez CVPR’17] 38.5 53.1 71.1 91.3 113.2 136.8 161.7 187.5 214.0 240.8 124.3
siMLPe [Guo WACV’23] 28.8 40.6 55.5 72.0 89.4 108.8 130.2 152.6 176.3 201.0 99.5
HisRep [Mao ECCV’20] 17.1 31.4 45.4 60.5 77.1 95.4 115.0 135.3 156.4 177.9 85.3
PGBIG [Ma CVPR’22] 16.0 29.4 43.0 57.7 74.1 92.0 110.8 130.7 151.1 171.5 82.0
Ours pose only 14.3 26.9 40.4 55.0 71.2 88.8 107.5 126.9 147.0 167.3 79.0

Ours 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1

Our method (Ours and Ours pose only) consistently
outperforms prior methods at different time intervals
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Results

Motion forecasting performance
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Results

Ablation study

Method 100 ms 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 800 ms 900 ms 1000 ms Average
w/o static 13.8 26.3 39.7 54.3 70.2 87.2 105.3 124.1 143.4 162.6 77.3

w/o dynamic 13.8 26.2 39.6 54.1 69.9 86.9 105.0 123.9 143.2 162.4 77.1
w/o static+dynamic 13.9 26.6 40.0 54.5 70.5 87.8 106.0 124.9 144.3 163.9 77.8

w/o head 13.7 26.2 39.5 54.2 70.1 87.2 105.2 124.1 143.6 163.0 77.2
w/o static+dynamic+head 14.3 26.9 40.4 55.0 71.2 88.8 107.5 126.9 147.0 167.3 79.0

Ours 13.2 25.6 38.6 52.9 68.7 85.7 103.9 122.7 142.0 161.3 76.1

Our method significantly outperforms the ablated versions
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Results

Ablation study
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Results

User study

• Stimuli: 20 randomly selected motion forecasting samples
• Participants: 20 users (10 males and 10 females)
• Procedure: rank different methods according to precision
(align with the ground truth) and realism (physically
plausible)
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Results

User study

Ours PGBIG [Ma CVPR’22] HisRep [Mao ECCV’20]

Precision
Median 1.0 2.0 3.0
Mean 1.2 2.3 2.5
SD 0.5 0.6 0.6

Realism
Median 1.0 2.0 2.0
Mean 1.3 2.2 2.3
SD 0.6 0.7 0.7

Our method outperforms prior methods in terms of both
precision and realism
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Discussion

Limitations

• Long-term motion forecasting performances are not as good
as short-term performances

• Designed for human-object interactions and may not work
well for human-human interactions
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Discussion

Future work

• Explore other scene object-related information such as
object shape for human motion forecasting

• Add some physical constraints for the predicted human
poses to make them more physically plausible

• Integrate our method into motion-related applications such
as redirected walking and human-agent collaboration
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Conclusion

Main contributions

• Validate the effectiveness of egocentric 3D object bounding
boxes for human motion forecasting

• Propose a novel method consisting of three components:
pose-object feature extraction, pose-object fusion, and
motion forecasting

• Demonstrate the superiority of our method through
experiments on two public datasets and a user study

Code available at zhiminghu.net/hu24_hoimotion 
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