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HaHeAE: Learning Generalisable Joint
Representations of Human Hand and Head

Movements in Extended Reality
Zhiming Hu, Guanhua Zhang, Zheming Yin, Daniel Häufle, Syn Schmitt, Andreas Bulling

Abstract—Human hand and head movements are the most
pervasive input modalities in extended reality (XR) and are
significant for a wide range of applications. However, prior works
on hand and head modelling in XR only explored a single modal-
ity or focused on specific applications. We present HaHeAE –
a novel self-supervised method for learning generalisable joint
representations of hand and head movements in XR. At the
core of our method is an autoencoder (AE) that uses a graph
convolutional network-based semantic encoder and a diffusion-
based stochastic encoder to learn the joint semantic and stochas-
tic representations of hand-head movements. It also features
a diffusion-based decoder to reconstruct the original signals.
Through extensive evaluations on three public XR datasets, we
show that our method 1) significantly outperforms commonly
used self-supervised methods by up to 74.1% in terms of
reconstruction quality and is generalisable across users, activities,
and XR environments, 2) enables new applications, including
interpretable hand-head cluster identification and variable hand-
head movement generation, and 3) can serve as an effective
feature extractor for downstream tasks. Together, these results
demonstrate the effectiveness of our method and underline the
potential of self-supervised methods for jointly modelling hand-
head behaviours in extended reality.

Index Terms—Hand movement, head movement, extended
reality, representation learning, graph convolutional network,
diffusion models

I. INTRODUCTION

Human hand and head movements are among the most
widely used input modalities in extended reality (XR) and
are, as such, crucial to various XR applications. This includes,
for example, interaction target prediction (predict a user’s
target object in interactive virtual environments based on their
hand motion features) [1], redirected walking (redirect a user’s
walking path based on their head orientation) [2], reducing
cybersickness that users frequently suffer from using inten-
tional head movements [3], user identification (identify a user
amongst others based on their hand and head movements) [4],
or activity recognition (recognise user activities from their
head movements) [5].
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Prior works on modelling hand and head movements in
XR typically only focused on a single modality [5]–[8],
thus neglecting the fact that hand and head movements are
closely coordinated with each other in almost all activities.
For example, when reaching for an object, the user’s hands
approach the specific position of the target object while their
head is oriented at the object to aid the hand movement. As
such, jointly modelling hand and head movements in XR has
significant potential for understanding human behaviours and
developing future human-aware intelligent XR systems [4],
[5]. In addition, existing methods on modelling hand-head
movements usually focused on extracting features that are
geared to a specific XR application [1], [2], [4], [5]. However,
designing application-specific features is laborious, requires
expert domain knowledge, and limits applicability to a narrow
set of use cases [9].

Recently, self-supervised representation learning has
emerged as a promising paradigm for learning latent semantic
embeddings of speech [10], [11], mouse movements [12],
[13], or gaze behaviours [14]. Self-supervised methods use
the original input data as their own supervision without
requiring extra human annotations, which are usually costly,
cumbersome, and time-consuming [15]. These methods can
also be well generalised across different tasks [16], [17].
Despite the advantages and potential of self-supervised
representation learning, no prior work has explored such
approaches for learning joint representations of human hand
and head behaviours.

To fill this gap, we introduce HaHeAE – the first self-
supervised method to learn generalisable joint representations
of human hand and head behaviours in extended reality. At
the core of our method is an autoencoder (AE) that uses
a graph convolutional network-based (GCN-based) semantic
encoder to learn the joint semantic representation of hand-
head movements and employs a diffusion-based stochastic
encoder to encode the remaining stochastic variations. Then, a
diffusion-based decoder is applied to reconstruct the original
signals from the semantic and stochastic representations. In
the training process, we propose to use hand-head movement
forecasting as an auxiliary task to enhance the spatial-temporal
features encoded in the semantic representation. We conduct
extensive experiments on three publicly available XR datasets,
i.e. the EgoBody [18], Aria digital twin (ADT) [19], and
GIMO [20] datasets that contain human hand and head data
collected during various daily activities from different users
in diverse XR environments, and demonstrate that our method
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significantly outperforms the self-supervised methods that are
commonly used for different signals by up to 74.1% in terms of
reconstruction quality and is generalisable across users, activi-
ties, and XR environments. We further show that the semantic
representation learned by our method can be used to identify
hand-head behaviour clusters with human-interpretable seman-
tics. In contrast, the stochastic representation can generate
variable hand-head movements. We also evaluate the practical
use of our method as a generic feature extractor for two
practical sample downstream tasks, i.e. user identification and
activity recognition, which are essential for intelligent XR
systems to understand users and the interaction context [4], [5],
[21], [22], and demonstrate consistent improvements on both
tasks. The full source code and trained models are available
at https://zhiminghu.net/hu25 haheae.

The specific contributions of our work are three-fold:
1) We present HaHeAE – a novel self-supervised method that

first uses a GCN-based semantic encoder and a diffusion-
based stochastic encoder to learn the joint semantic and
stochastic embeddings from hand-head signals, respec-
tively, and then applies a diffusion-based decoder to re-
construct the original signals from the learned embeddings.
Hand-head forecasting is proposed as an auxiliary training
task for refining the semantic representation.

2) We report extensive experiments on three public XR
datasets and demonstrate that our method significantly
outperforms other methods in reconstruction quality and is
generalisable across users, activities, and XR environments.

3) We show that our method enables new applications, includ-
ing interpretable hand-head cluster identification and hand-
head movement generation, and can serve as an effective
feature extractor for two practical sample downstream tasks.

II. RELATED WORK

A. Hand and Head Behaviour Modelling

Understanding and modelling human behaviours is an es-
sential research topic in extended reality [7], [14], [23], [24].
Human hand and head movements are particularly signif-
icant as they are the most pervasive input modalities in
extended reality and are considered crucial components for
future human-aware intelligent XR systems [3]–[5]. Against
this background, researchers have devoted tremendous efforts
to the computational modelling of human hand and head
behaviours for a wide range of XR applications. Specifically,
Belardinelli et al. modelled human hand behaviour using Gaus-
sian hidden Markov models to predict users’ target objects in
interactive virtual environments [1]. Bachynskyi et al. explored
second- and third-order lag models for modelling human hand
dynamics for mid-air pointing tasks in extended reality [25].
Gamage et al. proposed a hybrid classical-regressive model
to learn hand kinematics for predicting continuous 3D hand
trajectory for ballistic movements in immersive virtual envi-
ronments [6]. Yang et al. employed a hierarchical Bayesian
long short-term memory (LSTM) network to encode historical
head movements to predict future head trajectory on omni-
directional images [26]. Hu et al. used a 1D convolutional

neural network (CNN) to extract features from users’ head
orientations to further predict human visual attention in virtual
environments [8], [21], [27]. Hu et al. proposed to use a
combination of a 1D CNN, a recurrent neural network (RNN),
and a multi-layer perceptron (MLP) to model human head
behaviours for the recognition of user activities in 360-degree
videos [5]. However, existing methods for modelling human
hand and head behaviours typically explored only a single
modality and focused on specific applications rather than
learning generalisable representations. In stark contrast, we are
the first to learn generalisable joint representations of human
hand and head movements in extended reality.

B. Self-Supervised Representation Learning

Self-supervised representation learning is a machine learn-
ing paradigm where models are trained using only the orig-
inal input data as supervision information without requiring
additional human annotations. Self-supervised methods have
recently been demonstrated to be highly effective for learning
generalisable latent semantic embeddings of various signals
including speech [10], [11], mouse movements [12], [13],
and gaze behaviours [14]. Specifically, Rekimoto et al. used
a speech-to-unit encoder to generate hidden speech units
and employed a unit-to-speech decoder to reconstruct speech
from the encoded speech units [11]. Zhang et al. used a
Transformer-based encoder-decoder architecture to learn se-
mantic representations of mouse behaviours from both contin-
uous mouse cursor locations and discrete mouse events (click
vs. movements) [12]. Jiao et al. proposed an implicit neural
representation learning-based method to learn semantic repre-
sentations from low-resolution eye gaze data [14]. Despite the
potential of self-supervised representation learning, no prior
work has explored such approaches for learning joint semantic
representations of human hand and head behaviours.

C. Denoising Diffusion Models

Denoising diffusion models, or more precisely, denoising
diffusion probabilistic models (DDPM) [28], [29] are a class
of latent variable generative models consisting of a diffusion
process that incrementally adds Gaussian noises to the original
input signals and a reverse process that progressively denoises
the noisy samples. At the training stage, a diffusion process
is first applied to obtain noisy samples from the original
input and then a noise prediction network is trained to predict
the noises added to the samples. At the inference stage,
Gaussian samples are used as the input and a reverse process
is applied to progressively generate realistic samples from the
input by first predicting the noise using the noise prediction
network and then denoising the samples. DDPM models can
achieve superior performance over prior methods in terms of
generating realistic samples and have been applied in various
domains including image and video generation [30], time
series forecasting [31], and human motion prediction [32].
However, the reverse process of DDPM is a Markov process
that progressively samples from an estimated Gaussian dis-
tribution to denoise, which is stochastic and slow. Denoising
diffusion implicit model (DDIM) [33] is a variant of DDPM

https://zhiminghu.net/hu25_haheae
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that differs only at the reverse process: the variances of
the estimated Gaussian distributions are set to 0 so that the
reverse process becomes deterministic and fast. By running
the reverse process of DDIM backward, an input signal can
be deterministically encoded into a noisy sample, which can
be seen as a stochastic representation of the original signal
that allows high-quality reconstruction. Owing to its ability
for encoding stochastic variations, DDIM has recently been
used to learn latent embeddings of various signals [13], [34].
For example, Preechakul et al. used an image encoder and a
conditional DDIM model to learn the semantic and stochas-
tic embeddings of images respectively and then applied the
DDIM model as a decoder to reconstruct the original image
from the learned embeddings [34]. Despite its potential for
representation learning, DDIM has not yet been applied to
learn representations of human hand and head behaviours. In
this work, we combine a graph convolutional network and a
conditional DDIM to learn the joint semantic and stochastic
representations of hand-head movements and use the DDIM
model as a decoder to reconstruct the original data.

III. METHOD

A. Problem Definition

We formulate the problem of learning joint representations
of hand and head movements as a self-supervised task. This
task involves learning latent embeddings from the original
hand-head movements and using the learned representation
to reconstruct the original signals. Given that different XR
environments may use different coordinate systems, we pro-
pose to represent hand-head movements using relative coor-
dinates with the origin set to the position of the head. This
approach yields a generalisable representation of hand-head
data collected across different XR environments. We use 3D
positions of the left and right hands ha ∈ R6 to represent
hand movement following prior works on hand behaviour
modelling [1], [6], [25] and employ head orientation he ∈ R3

to denote head movement, where he is a unit vector indicating
head forward direction. Given a sequence of hand movements
HA1:N = {ha1, ha2, ..., haN} ∈ R6×N and head orientations
HE1:N = {he1, he2, ..., heN} ∈ R3×N , the task is to learn
latent embeddings that can reconstruct the original signals.

At the core of our method is an autoencoder that first
uses a graph convolutional network-based semantic encoder
and a diffusion-based stochastic encoder to learn the joint
semantic and stochastic representations of hand-head move-
ments, respectively, and then applies a diffusion-based decoder
to reconstruct the original signals. We propose hand-head
forecasting as an auxiliary training task to refine the semantic
representation. See Figure 1 for an overview of our method.

B. GCN-based Semantic Encoder

Inspired by the fact that graph convolutional networks
surpass other architectures such as CNNs or RNNs in learning
correlations of different body parts [35]–[37], we proposed to
use a GCN-based encoder to extract semantic features from
the hand-head data. Specifically, we modelled the hand-head
data H1:N = {ha1, he1, ha2, he2, ..., haN , heN} ∈ R9×N as

fully connected spatial and temporal graphs H ∈ R3×3×N

with their adjacency matrices measuring the weights between
each pair of nodes. The spatial graph consists of three joints
representing the head, left hand, and right hand, respectively,
while the temporal graph contains N nodes corresponding to
hand-head data at different time steps.

We first used a spatial-temporal graph convolutional net-
work (ST-GCN) to map the original hand-head data into
a latent feature space (see Figure 1). The ST-GCN first
performed temporal convolution by multiplying the data with
a temporal adjacency matrix AT ∈ RN×N , then mapped the
original node features (3 dimensions) into latent space (16
dimensions) using a feature matrix W ∈ R3×16, and finally
performed spatial convolution by multiplying the data with
a spatial adjacency matrix AS ∈ R3×3 to obtain hand-head
features H ∈ R16×3×N . We then used a residual GCN module
containing two GCN blocks to further process the hand-head
features. Each GCN block consists of an ST-GCN to extract
features, a layer normalisation (LN) to normalise the data, a
Tanh activation function, and a dropout layer with a dropout
rate of 0.1 to prevent the GCN from overfitting. The feature
matrix of the ST-GCN used in the GCN block was set to
W ∈ R16×16 to ensure that the input and output of the
block had the same size. A residual connection was applied
for each GCN block to improve the network flow. We used
three residual GCN modules in total to enhance the hand-head
features with a downsample layer applied after the first two
modules. The downsample layer used a 1D average pooling
with a kernel size of two to compress the hand-head data along
the temporal dimension. After the downsample operation, we
obtained hand-head features in the size of H ∈ R16×3×(N/4).

We finally aggregated the hand-head features along the
spatial dimension (R16×3×(N/4) → R48×(N/4)), applied an
adaptive average pooling to compress the features into a
sequence length of one (R48×(N/4) → R48×1), and used a 1D
convolution layer with 128 channels to map the compressed
features into a semantic feature vector Esem ∈ R128.

C. DDIM-based Hand-head Decoder

We used a conditional DDIM as the decoder to recon-
struct the original hand-head movements from the input of
(HT , T, Esem), where HT is the stochastic representation of
the original hand-head data, T is the number of denoising steps
and is set to 100 following common settings [13], [32], [34],
and Esem is the semantic representation. At the core of our
decoder are a noise prediction network ϵθ that estimates the
noise added to the original data and a denoising process that
iteratively generates a cleaner version based on the estimated
noise.

a) Noise Prediction Network: We used a 1D CNN-
based UNet as our noise prediction network (see Figure 1)
in light of the good performance of UNet as a backbone in
diffusion models [34], [38]. We employed 1D CNN because it
is computationally efficient and performs well for processing
time series data [5], [8], [21]. Specifically, we first used a
1D CNN layer with 64 channels and a kernel size of three
to convert the input signal Ht ∈ R9×N into a latent feature
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Fig. 1: Architecture of HaHeAE. Our method uses a GCN-based semantic encoder to learn the joint semantic representation
of hand-head movements and a DDIM-based stochastic encoder to encode the remaining stochastic variations. A DDIM-
based hand-head decoder reconstructs the original input signals from these semantic and stochastic representations. Hand-head
forecasting is used as an auxiliary training task to refine the semantic representation.

space. We then converted the time step t to an embedding Et

by sequentially applying a sinusoidal encoding, a linear layer
that has 128 neurons, a SiLU activation function, and a linear
layer with 128 neurons. We further employed a ResConv1D
module to extract features by using the time step embedding
Et and the semantic representation Esem as the condition,
as illustrated in Figure 2. The ResConv1D module contains
two residual blocks, each consisting of a group normalisation
(GN) [39], a SiLU activation function, a 1D CNN layer with
64 channels and a kernel size of three, a group normalisation,
a SiLU function, a dropout layer with a dropout rate of 0.1,
and a 1D CNN layer with 64 channels and a kernel size of
three. Et was processed by a SiLU function and a linear layer
to obtain an embedding in the size of 128. Half of Et (in
the size of 64) was multiplied with the output of the second
GN layer while the other half was added to the features,
following prior works that used time step as a condition [34],
[38]. Esem was processed by a SiLU function and a linear
layer with 64 neurons and was then applied after Et as the
second condition. In addition to the ResConv1D module, we
also applied downsample layers to compress the data along the
temporal dimension and symmetrically used upsample layers
to recover the data following common practice of UNet [13],
[34], [38]. We finally used a GN layer, a SiLU function, and
a 1D CNN layer with nine channels and a kernel size of three
to estimate the noise.

b) Denoising Process: Following prior settings in
DDIMs [33], [34], our decoder used the following determin-
istic denoising process:

Ht−1 =
√
αt−1(

Ht −
√
1− αtϵ

t
θ√

αt
) +

√
1− αt−1ϵ

t
θ, (1)
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Fig. 2: The ResConv1D module used in our method is con-
ditioned on the time step embedding Et and the semantic
representation Esem.

where ϵtθ = ϵθ(Ht, t, Esem) is the estimated noise, αt =∏t
i=1(1 − βi) and β1, ..., βt ∈ (0, 1) are hyper-parameters

used to control the noise level at each step. By running the
denoising process iteratively for T steps, the original signals
can be reconstructed from the stochastic and semantic hand-
head representations.

D. DDIM-based Stochastic Encoder

After being trained, our conditional DDIM described in
subsection III-C can also be used as an encoder [13], [34]
to obtain the stochastic representation Esto = HT from
the original hand-head data H0 by running its deterministic
denoising process backward (the reverse of Equation 1) for T
steps:

Ht+1 =
√
αt+1(

Ht −
√
1− αtϵ

t
θ√

αt
) +

√
1− αt+1ϵ

t
θ. (2)
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Esto and Esem complement each other by respectively en-
coding the stochastic details and high-level semantics of the
original hand-head signals. Note that Esto is only used in the
inference stage, i.e. after the DDIM has been trained, to allow
high-quality reconstruction of the hand-head movements.

E. Hand-head Forecasting

Prior works on large language models (LLMs) have demon-
strated the effectiveness of next token prediction as a train-
ing task to learn semantic representations of sequential
data [40], [41]. Inspired by this, we proposed to use hand-
head forecasting as an auxiliary training task to enhance
the spatial-temporal features encoded in the semantic repre-
sentation learned by our method, as illustrated in Figure 1.
In light of the good performance of 1D CNN for human
behaviour forecasting [8], [21], we used the features learned
by our semantic encoder as input to 1D CNNs to predict
hand-head movements in the near future HN+1:N+∆n =
{haN+1, heN+1, haN+2, heN+2, ..., haN+∆n, heN+∆n} ∈
R9×∆n. Specifically, for hand movement forecasting we ap-
plied two 1D CNN layers having 32 channels with kernel size
of three and six channels with kernel size of one respectively to
process the hand features while for head movement forecasting
we used two 1D CNN layers with 16 channels, whose kernel
size is three, and three channels, whose kernel size is one,
respectively to process the head features. A layer normalisation
and a Tanh activation function were applied after the first
CNN layer while a Tanh activation function was employed
after the second CNN layer. The predicted head movements
were normalised to unit vectors to represent head orientations.

F. Training and Inference

a) Training Stage: At the training stage, we first gener-
ated a noisy version Ht of the original hand-head data H0 by
adding random noise to it using the following formula:

Ht =
√
αtH0 +

√
1− αtϵ, (3)

where ϵ is a random noise sampled from N(0, I) and has the
same size as H0, t is the number of time steps and is uniformly
sampled from 1 to 1000. We further used (Ht, t, Esem) as
input to the noise prediction network ϵθ to estimate the noise.
We finally trained our method in an end-to-end manner using
the combination of a noise prediction loss Lnoise and a hand-
head forecasting loss Lforecasting:

L = Lnoise + Lforecasting

=
1

N
∥ϵθ(Ht, t, Esem)− ϵ∥2 + 1

∆n

∥∥∥Ĥfuture −Hfuture

∥∥∥2 ,
where Ĥfuture = ĤN+1:N+∆n and Hfuture = HN+1:N+∆n

are the predicted and ground truth future movements respec-
tively.

b) Inference Stage: At the inference stage, we first
calculated the semantic representation Esem from the original
hand-head data H0, then used (H0, T, Esem) as input to
the stochastic encoder to obtain the stochastic representation
Esto = HT , and finally reconstructed the original signal from
(HT , T, Esem) using the hand-head decoder.

IV. EXPERIMENTS AND RESULTS

A. Datasets

We evaluated our method on three publicly available XR
datasets, i.e. the EgoBody [18], ADT [19], and GIMO [20]
datasets that contain human hand and head data collected
during various daily activities from different users in diverse
XR environments.

a) EgoBody: The EgoBody dataset collects the hand and
head movements from 36 users performing various social
interaction activities, including catch, chat, dance, discuss,
learn, and teach, in 15 indoor environments. The data was
recorded using a Microsoft HoloLens2 headset at 30 fps. The
dataset contains 125 sequences, each lasting about 2 minutes.

b) ADT: The ADT dataset contains 34 sequences of
human hand and head movements performing three indoor
activities, i.e. decoration, meal, and work, in two virtual envi-
ronments, including an apartment and an office environment.
The data was collected using an Aria glass at 30 fps and each
sequence lasts around 2 minutes.

c) GIMO: The GIMO dataset records hand and head data
from 11 users performing various daily activities in 19 indoor
scenarios. The activities cover three categories, i.e. change
the state of objects (open, push, transfer, throw, pick up,
lift, connect, screw, grab, swap objects), interact with objects
(touch, hold, step on, reach to objects), and rest (sit or lay on
objects). The data was collected using a Microsoft HoloLens2
headset at 30 fps. The whole dataset contains 215 sequences,
each lasting about 10 seconds.

d) Training and Test Sets: We trained our method using
the EgoBody dataset since it is the largest among the three
datasets. Specifically, we followed the default training and
test splits in the original paper [18], i.e. using 82 sequences
for training and the remaining 43 sequences for testing. The
training and test sets of EgoBody have no overlapping users.
We also used two unseen datasets, ADT and GIMO, to
evaluate our method’s generalisation capability for different
users, activities, and XR environments.

B. Evaluation Settings

a) Evaluation Metrics: For reconstructing hand trajec-
tories, we followed prior works on human motion mod-
elling [36], [37] to use the mean per joint position error
(MPJPE), i.e. the mean of the left and right-hand position
errors, as the evaluation metric. For reconstructing head
orientations, we used the mean angular error between the
reconstructed and ground truth head orientations as our metric
following prior works on head behaviour modelling [7], [8].

b) Baselines: To the best of our knowledge, no methods
exist for learning semantic representations of human hand and
head movements. To better evaluate our method, we used vari-
ational autoencoders (VAEs), which are commonly used for
learning semantic representations [42]–[44], as the baselines
to compare with our method. VAE consists of an encoder
that learns the semantic embeddings from the input data and
a decoder to reconstruct the original signals. The encoder
and decoder of a VAE can be implemented using arbitrary
neural networks. To provide a comprehensive comparison, we
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implemented variational autoencoders using four commonly
used neural networks:
• VAE 1DCNN: The encoder consists of three 1D CNN lay-

ers, followed by a layer normalisation and a ReLU activation
function. Each CNN layer has 32 channels and a kernel
size of three. The decoder contains three 1D transposed
CNN layers: the first two transposed CNN layers have 32
channels and a kernel size of three, each followed by a layer
normalisation and a ReLU activation function. In contrast,
the third transposed CNN layer has a kernel size of three and
a channel size equal to the input dimension to reconstruct
the original data.

• VAE LSTM: The encoder contains an LSTM layer with
32 channels, while the decoder has an LSTM layer with a
channel size equal to the input dimension for reconstruction.

• VAE GRU: The encoder has a GRU layer with 32 channels,
while the decoder uses a GRU layer with a channel size
equal to the input dimension for reconstructing the data.

• VAE MLP: The encoder consists of two linear layers with
128 neurons, each followed by a layer normalisation and a
ReLU activation function. The decoder contains two linear
layers: the first linear layer has 128 neurons. A layer
normalisation and a ReLU activation function follow it. In
contrast, the second linear layer has an output size equal to
the input dimension to reconstruct the original signals.

c) Implementation Details: We set the sequence length
of hand-head movements N to 40 and the time horizon of
hand-head forecasting ∆n to 3. We trained our method and
the baseline methods for a total of 130 epochs using the Adam
optimiser with a learning rate of 1e − 4 and a batch size of
64. Our method was implemented on an NVIDIA Tesla V100
SXM2 32GB GPU with an Intel(R) Xeon(R) Platinum 8260
CPU @ 2.40GHz and it took around nine hours for our method
to finish its training on the EgoBody dataset.

C. Reconstruction Results

a) Results on EgoBody: We first trained and tested our
method on the EgoBody dataset and indicated the reconstruc-
tion performances of different methods in Table I. The table
shows the MPJPE error (in centimetres) of hand trajectory
reconstruction and the mean angular error (in degrees) of
head orientation reconstruction. As can be seen from the
table, our method significantly outperforms other methods
on EgoBody, achieving an improvement of 51.8% (1.664 vs.
3.455) and 64.3% (0.834 vs. 2.338) in terms of hand and head
reconstruction, respectively. We further performed a paired
Wilcoxon signed-rank test by first generating a distribution
of performance metrics for each method and then comparing
them directly. The test sample size of the EgoBody dataset
is 66293. The results validated that the differences between
our method and the baselines are statistically significant (p <
0.01). We also analysed the distributions of different methods’
reconstruction errors and validated that our method achieves
better performance than other methods (see supplementary
material for more details).

b) Results on ADT and GIMO: We further tested our
method and the baseline methods, which were trained on

TABLE I: Hand and head reconstruction errors (hand unit:
centimetres, head unit: degrees) of different representation
methods on the EgoBody, ADT, and GIMO datasets. Best
results are in bold.

EgoBody ADT GIMO

hand head hand head hand head

VAE 1DCNN 3.575 2.549 3.876 2.776 4.422 3.100
VAE LSTM 7.254 5.421 7.933 9.928 8.908 8.060
VAE GRU 6.776 4.390 7.351 6.161 8.369 6.371
VAE MLP 3.455 2.338 3.932 2.733 4.310 2.927

Ours 1.664 0.834 1.966 0.707 2.397 1.247
Ours 1DCNN 2.010 1.070 2.370 1.095 2.883 1.500
Ours LSTM 1.706 0.842 1.937 0.713 2.587 1.341
Ours GRU 1.715 0.861 1.964 0.718 2.658 1.377
Ours MLP 1.840 0.851 2.213 0.822 2.660 1.279

Ours w/o Esem 56.803 93.361 55.952 92.991 57.005 91.864
Ours w/o Esto 10.604 11.278 11.889 12.878 11.158 12.042

EgoBody, directly on the ADT and GIMO datasets without any
fine-tuning. The hand and head reconstruction performances
of different methods are summarised in Table I. We can see
from the table that our method consistently outperforms other
methods by a large margin on both the ADT and GIMO
datasets. Specifically, on the ADT dataset, our method outper-
forms other methods by 49.3% (1.966 vs. 3.876) and 74.1%
(0.707 vs. 2.733) in terms of hand and head reconstruction,
respectively. On the GIMO dataset, our method achieves an
improvement of 44.4% (2.397 vs. 4.310) and 57.4% (1.247
vs. 2.927) in hand and head reconstruction, respectively. A
paired Wilcoxon signed-rank test was further performed to
compare the performances of our method with other methods.
The test sample sizes of the ADT and GIMO datasets are
91998 and 44081, respectively. The results demonstrated that
the differences between our method and other methods on
both the ADT and GIMO datasets are statistically significant
(p < 0.01).

c) The Effectiveness of the GCN-based Semantic En-
coder: To test the effectiveness of our GCN-based encoder, we
replaced it with the baseline VAE encoders (1DCNN, LSTM,
GRU, or MLP) to re-train our method. We can see from Table I
that our GCN-based encoder achieves better performance than
other encoders in terms of hand-head reconstruction quality,
demonstrating its superiority for encoding hand-head signals.

d) The Effectiveness of the Semantic and Stochastic Rep-
resentations: We also evaluated the effectiveness of Esem and
Esto in reconstructing the original signals. Specifically, we first
replaced Esem and Esto with Gaussian noise respectively and
then used them to reconstruct the hand-head data, following
prior works on evaluating representations [13], [34]. We can
see from Table I that the reconstruction performance deteri-
orates significantly after removing Esem or Esto, validating
that both Esem and Esto are significant for reconstructing the
original hand-head data. We also find that Esem has a notably
higher influence on the reconstruction quality than Esto. This
is because Esem captures the semantic information that is
critical for reconstruction while Esto encodes the remaining
stochastic variations that are less important [13], [34].
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(a) Activity: Instruct to act. The
head is facing slightly downward;
both hands move noticeably be-
low the head.

(b) Activity: Learn course while
sitting. The head is facing slightly
upward; both arms are bent and
have no large movements.

(c) Activity: Casually chat while
standing. The head is facing up-
ward; both arms are laid down and
remain almost still.

(d) Activity: Take a tape. The
head is facing forward; the left
hand has a greater range of mo-
tion than the right hand.

Fig. 3: Representative hand and head movements for each of the four largest clusters and their semantics on the EgoBody
dataset. The red and blue lines indicate the trajectories of left and right hands, respectively, while the black arrows denote
head orientations. The colours of the lines and arrows are gradually deepened over time.

V. USE CASES ENABLED BY OUR METHOD

A. Identifying Interpretable Hand-head Clusters

Analysing and understanding human hand and head be-
haviours is a significant research topic in extended reality
and is considered a crucial component for future human-
aware intelligent XR systems [4], [5], [21], [22]. This section
shows that our method can facilitate hand-head behaviour
analysis by identifying hand-head behaviour clusters with
human-interpretable semantics. Specifically, we first calculated
the semantic representations of the hand-head movements on
the test set of EgoBody using our method and then identified
hand-head clusters in the semantic embedding space using hi-
erarchical density-based spatial clustering of applications with
noise (HDBSCAN) [45]. HDBSCAN is a clustering method
that can handle clusters with varying densities and noisy data
points and has shown good performance in representation-
based clustering [12], [46]. We followed common practice in
representation learning to use cosine similarity as the distance
metric for HDBSCAN to find clusters [12], [47], [48]. In
this way, we identified a total of 176 clusters on the test set
of EgoBody. We examined the four clusters with the largest
data samples for simplicity since they provided insights into
the most prevalent behaviour patterns. For each cluster, we
used the hand-head data sample that is closest to the cluster’s
centroid as the representative of the whole cluster [12], [49] to
further analyse and understand human hand-head behaviours.
The representative hand and head movements for each of
the four largest clusters and their semantics are illustrated in
Figure 3 with red and blue lines indicating hand trajectories
and black arrows denoting head orientations.

We observed that the largest cluster (a) mainly consists of
noticeable horizontal movements of both hands across differ-
ent activities such as instruct to act or perform. Furthermore,
we found that cluster (b) and cluster (c) contain very limited
hand-head movements at different locations, suggesting that
the user mainly stood or sat still and barely moved. The
samples forming these clusters are mainly generated during
the activities that require few hand and head movements such

as learn course while sitting or casually chat while standing. In
these scenarios, users mainly stay still and may only use slight
hand or head movements (e.g., gestures or nodding) as the
body language during communications [50], in line with the
patterns illustrated by these two clusters. In addition, cluster
(d) demonstrates moving one hand and the other hand mainly
staying still. These samples were generated from activities
requiring only one hand to interact with objects such as take a
tape or pick up a cup. The above results demonstrate that our
method can be applied to identify common patterns of hand-
head movements and thus has great potential to facilitate the
analysis of hand-head signals. Furthermore, we also compared
the clustering performance of our method with that of the
baseline methods and validated the superiority of our method
(see supplementary material for more details).

B. Generating Variable Hand-head Movements

Collecting large-scale human behavioural data in extended
reality serves as the basis for understanding human be-
haviours [7], [8], [21] and developing data-driven models [4],
[5], [23]. However, human behavioural data collection is
usually costly and time-consuming and raises serious con-
cerns about privacy and security [4], [51], [52]. To address
these challenges, one common solution is to augment existing
datasets instead of collecting new data [12], [13]. Our method
can be used for data augmentation by generating hand-head
movements with controllable randomness from the original
signals. Specifically, we first added random noise to the
stochastic representation Esto learned by our method using
the formula:

Evar = Esto + β · z, (4)

where z is a random noise sampled from N(0, I) and has
the same size as Esto, β is a fixed constant used as a
weighting factor to control the randomness, and Evar is the
altered stochastic representation. We then used our decoder
(see Figure 1) to generate hand-head movements from the
semantic and altered stochastic representations. This way, our
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Original Esto Esto + 0.1 · z Esto + 0.3 · z z

Fig. 4: Hand and head movements generated from altered stochastic representations and random noise on the EgoBody dataset.
Our method can generate variable and realistic hand-head movements from altered stochastic representations and random noise.

method can generate hand-head movement variations that dif-
fer in details while preserving the core semantic information.
Figure 4 shows some generation examples on the EgoBody
dataset. We can see that the generated hand-head movements
are similar to the original one in overall moving trend, with
notable differences in moving trajectory. To further explore
our method’s applicability, we replaced our stochastic repre-
sentation with random noise z to generate hand-head signals.
The results in Figure 4 (column z) showed that our method
can generate variable and realistic hand-head movements from
random noise. The above results illustrate the usefulness of
our method as an effective means to generate variable and
realistic hand-head movements, which has significant potential
for enriching and augmenting existing hand-head movement
datasets.

C. Serving as a Reusable Feature Extractor

A pre-trained self-supervised representation method can
usually be reused for relevant downstream tasks by using
the semantic representation learned by the method as pre-
computed features [12], [13], [34], [53]. Inspired by this, we
further evaluated the practical use of our method as a generic
feature extractor for two sample downstream tasks, i.e. user
identification and activity recognition which are essential for
intelligent XR systems to understand users and the interaction
context [4], [5], [21], [22].

TABLE II: Performances of the semantic representations
learned by different methods on the downstream tasks of user
identification and activity recognition. Best results are marked
in bold. The representation learned by our method significantly
outperforms the representations generated by other methods in
terms of both user identification accuracy and activity recogni-
tion accuracy. Our method consistently outperforms its ablated
versions, validating the effectiveness of each component used
in our method.

User Identification Activity Recognition

EgoBody EgoBody ADT

Chance 8.3% 33.3% 33.3%

VAE 1DCNN 26.3% 48.8% 62.7%
VAE LSTM 24.9% 47.1% 61.3%
VAE GRU 28.0% 41.3% 61.0%
VAE MLP 25.8% 50.5% 60.7%

Ours hand only 18.0% 55.5% 53.6%
Ours head only 25.7% 46.1% 62.5%

Ours w/o forecasting 29.4% 54.7% 63.1%
Ours 29.8% 55.7% 63.9%

1) User Identification: User identification is a popular
research topic in extended reality and has great relevance for
a variety of applications such as adapting virtual environ-
ments [54], personalising user interfaces [54], and authenti-
cating users [54], [55]. Recent studies have revealed that a
user’s hand and head movements in extended reality can be
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used as a means to identify the user [54], [55]. Therefore, user
identification can be used as a relevant sample downstream
task to evaluate the quality of the semantic representation
learned by our method. The higher the user identification
accuracy, the better the quality of the learned representation.

a) Datasets: We evaluated on the EgoBody dataset
considering that it provided user labels for every recorded
sequence. We noticed that the default training and test sets
provided in the original paper [18] contain no overlapping
users and thus cannot be directly used for evaluating user
identification. To address this problem, we opted to only use
the default test set and split it into two halves with each half
containing half of the data from 12 users. We used one half
for training and the other half for testing.

b) Baselines: We compared our method with the baseline
methods as described in subsection IV-B. We also provided a
“Chance” baseline to help understand the results with more
context. In addition, to evaluate the effectiveness of using
hand-head forecasting as an auxiliary training task, we further
used the ablated version of not using hand-head forecasting as
a baseline method. Furthermore, we employed our method to
learn representations only from hand or head movements and
used them as the baselines to compare with our hand-head
joint representations.

c) Procedure: We followed common practice of evalu-
ating representation learning methods [12], [13], [34] to first
calculate the semantic representations of hand-head behaviours
using the pre-trained representation methods and then apply
these representations as pre-computed features to train and
test a classifier for user identification. The classifier contains
a linear layer and a Softmax activation function to compute
the probability of each user. We trained the classifier using
the Adam optimiser with a learning rate of 1e−5 and a batch
size of 64 for a total of 60 epochs for different representation
methods, respectively.

d) Results: Table II shows the user identification accu-
racies of different representation methods on the EgoBody
dataset. It can be seen in the table that our method can
achieve superior performance over other methods in terms
of identification accuracy (29.8% vs. 28.0%). Using a paired
Wilcoxon signed-rank test we confirmed that the differences
between our method and other methods are statistically sig-
nificant (p < 0.01). We also find that our method can achieve
higher identification accuracy than the ablated version of not
using hand-head forecasting (29.8% vs. 29.4%), validating
the usefulness of hand-head forecasting as an auxiliary train-
ing task to refine the semantic representation. Furthermore,
we observed that the hand-head joint representations learned
by our method significantly outperform the representations
learned only from hand trajectories (29.8% vs. 18.0%) or head
orientations (29.8% vs. 25.7%), demonstrating the superiority
of our joint representations. The above results exhibit the
effectiveness of our method as a generic feature extractor for
the application of user identification.

2) Activity Recognition: Activity recognition is an impor-
tant task in the area of human-centred computing and has
significant relevance for many XR scenarios such as adaptive
virtual environment design [22], low-latency predictive inter-

faces [56], [57], and human-aware intelligent systems [58].
It is well-known that user activities can be recognised from
their hand and head movement patterns [5], [59]. As such,
activity recognition serves as a particularly relevant sample
downstream task to further evaluate the semantic representa-
tion learned by our method. The higher the activity recognition
accuracy, the better the quality of the learned representation.

a) Datasets: We used the EgoBody and ADT datasets
for evaluation given that they provided activity labels for each
collected sequence. For the EgoBody dataset, we used the
default training and test sets provided by the authors [18] (see
subsection IV-A) and followed prior work [23] to evaluate for
three activities, i.e. chat, learn, and teach, that have the most
recordings. For the ADT dataset, we used 24 sequences for
training and 10 sequences for testing to evaluate for three
activities, i.e. decoration, meal, and work, following prior
work [23].

b) Baselines: We employed the same baselines as used
for user identification (see subsubsection V-C1).

c) Procedure: We followed the same procedure as used
in subsubsection V-C1 to first calculate the semantic repre-
sentations and then train and test a linear classifier for activity
recognition.

d) Results: Table II shows the activity recognition ac-
curacies of different representation methods on the EgoBody
and ADT datasets. We can see that our method consistently
outperforms other methods in terms of recognition accuracy
on both the EgoBody (55.7% vs. 50.5%) and ADT (63.9%
vs. 62.7%) datasets and the differences between our method
and other methods are statistically significant (paired Wilcoxon
signed-rank test, p < 0.01). We also noticed that our method
achieves higher recognition accuracies than the ablated version
of not using hand-head forecasting on both EgoBody (55.7%
vs. 54.7%) and ADT (63.9% vs. 63.1%), demonstrating the
effectiveness of using hand-head forecasting as an auxiliary
training task to refine the semantic representation. In addition,
we confirmed that our joint representations can achieve higher
performance than the representations learned only from hand
or head movements on both EgoBody and ADT, proving the
superiority of our joint representations. These results illustrate
the usefulness of our method as a reusable feature extractor
for the task of activity recognition.

VI. DISCUSSION

A. On Performance

In this work, we proposed HaHeAE – the first self-
supervised method to learn generalisable joint representations
of human hand and head movements in extended reality.
We evaluated our method in the challenging out-of-domain
setting, i.e., we trained it on one XR dataset and tested it
on two unseen datasets across different users, activities, and
XR environments. We showed that our method significantly
outperforms other methods in hand and head reconstruction
performance, achieving improvements of up to 74.1% (see
Table I). We also demonstrated that our method has strong
generalisation capability for different users, activities, and
XR environments (see Table I). We further evaluated the
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learned semantic representations on two sample downstream
tasks relevant to XR applications: understanding users and
their interaction context. As shown in Table II, the semantic
representations learned by our method consistently outper-
form those learned by other methods across different tasks
and different datasets, achieving an improvement of up to
5.2% (55.7% vs. 50.5% on EgoBody) in terms of activity
recognition accuracy. Taken together, these results are highly
promising and, for the first time, demonstrate the feasibility
of learning generalisable joint representations of hand and
head movements in a self-supervised fashion. That is, without
requiring additional human annotations that are usually costly,
cumbersome, and time-consuming to collect [15]. As such, our
work opens up an exciting new research direction for hand-
head behaviour modelling in extended reality.

B. On the Method

Our method combines a GCN-based and a diffusion-based
encoder to learn joint semantic and stochastic embeddings
from hand-head signals, respectively, and a diffusion-based
decoder to reconstruct the original signals from the learned
embeddings. We used a graph convolutional network as our
semantic encoder to extract features from hand and head move-
ments owing to its good performance in fusing information
from different modalities [32], [36], [37]. We used a DDIM
model because it can explicitly encode the original signals’
stochastic variations and can reconstruct the original data with
high quality from the semantic and stochastic embeddings.
The results summarised in Table I showed that both the
learned semantic (Esem) and stochastic (Esto) representations
contribute significantly to the reconstruction performance of
our method while Esem has higher influence on reconstruction
than Esto, validating that more critical information of hand-
head signals is encoded in Esem.

Even more interestingly, by disentangling the hand-head
joint representations into a semantic and a stochastic part, our
method enables novel use cases with significant potential for
XR applications. Specifically, the semantic representation can
be used to analyse hand-head behaviours in XR by identifying
interpretable hand-head clusters within the original signals (see
Figure 3) while the stochastic representation can be used to
generate hand-head movements with controllable randomness
(see Figure 4). Given these results, our method contributes to
the explainability of human hand and head behaviours in XR
and can serve as an analysis or generation tool to facilitate
future research in human hand-head behaviour modelling and
help develop future human-aware intelligent XR systems. Fur-
thermore, our method also provides meaningful insights into
learning disentangled representations of human behaviours in
extended reality.

C. On Hand-head Joint Representations

In this work, we pioneered a new method for learning joint
representations of human hand and head movements in XR,
while prior works on hand and head behaviour modelling
typically only explored a single modality [1], [7], [8], [25].
We chose to model hand and head behaviours jointly based on

the insight that human hand and head movements are closely
coordinated with each other in most daily activities [23],
[60]. Joint modelling of hand and head behaviours offers
many benefits for practical applications in extended reality:
First, it is easier to interpret the semantics behind human
behaviours when considering both human hand and head
movements than only using a single modality. For example,
in Figure 3, it would be much more difficult to understand
the users’ behaviours if hand trajectories or head orientations
were removed. In addition, hand-head joint representations
make it possible to simultaneously generate hand and head
movements that are coordinated with each other, as illustrated
in Figure 4. Furthermore, joint representations of hand-head
movements can capture more useful information than the
representations learned from only hand or head signals and
can achieve better performance when applied to downstream
tasks (Table II). Given these benefits, it is highly promising to
continue working in this direction to develop more powerful
methods for learning hand-head joint representations.

D. Limitations and Future Work
Despite all these advances, we also identified several limita-

tions that we plan to address in future work. First, to learn gen-
eralisable representations across different XR environments,
we used relative coordinates with the origin set to the position
of the head. However, in doing so we neglected the trans-
lational movement of the head and only encoded the head’s
rotational movement in our representation. In the future, we
plan to explore how to also include translational components
of the head movements into the learned latent embeddings. In
addition, we trained our method only on the EgoBody dataset
and directly tested it on the ADT and GIMO datasets. In future
work we would like to train and test our method on more
datasets to further evaluate its generalisability. Finally, in the
future, we would also like to explore more applications of
our hand-head joint representations to assist XR researchers
in analysing and understanding human behaviours.

VII. CONCLUSION

In this work, we proposed a novel self-supervised method
for learning generalisable joint representations of human hand
and head movements in extended reality that first uses a
GCN-based semantic encoder and a DDIM-based stochastic
encoder to learn the semantic and stochastic representations,
respectively, and then applies a DDIM-based decoder to
reconstruct the original hand-head data. Through extensive
experiments on three public XR datasets for reconstructing the
original hand-head signals, we demonstrated that our method
significantly outperformed other methods by a large margin
and can be generalised to different users, activities, and XR
environments. We further show that the representations learned
by our method can be used to analyse hand-head behaviours,
generate variable hand-head data, and serve as pre-computed
features for two practical sample downstream tasks. As such,
our results underline the potential of applying self-supervised
methods for jointly modelling human hand-head behaviours
in extended reality and guide future work on this promising
research direction.
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