

HaHeAE: Learning Generalisable Joint Representations of Human Hand and Head Movements in Extended Reality

 $\underline{\text{Zhiming Hu}}^{1,2}$, Guanhua Zhang 1 , Zheming Yin 1 , Daniel Häufle 3,4 , Syn Schmitt 1,4 , Andreas Bulling 1

³University of Tuebingen

⁴The Center for Bionic Intelligence Tuebingen Stuttgart

¹University of Stuttgart

²The Hong Kong University of Science and Technology (Guangzhou)

Table of Contents

Research Background

Related Work

Method

Results

Use Cases

Discussion

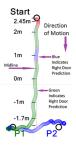
Conclusion

Research Background

Applications of human hand and head movements in XR

Interaction target prediction [Belardinelli IROS'22]

Applications of human hand and head movements in XR



Redirected walking [Gandrud SAP'16]

Applications of human hand and head movements in XR

Activity recognition [Hu TVCG'22]

Research Background

Applications of human hand and head movements in XR

Figure 1: "Beat Saber" - VR rhythm game.

Figure 2: "Tilt Brush" – VR painting app.

User identification [Nair TVCG'24]

Motivation

Learning **generalisable joint representations** of human hand and head movements in XR

- Jointly modelling hand and head movements in XR has significant potential for understanding human behaviours
- Generalisable hand-head representations can be reused for various XR applications

Figure 1: "Beat Saber" – VR rhythm game.

Figure 2: "Tilt Brush" - VR painting app.

Table of Contents

Research Background

Related Work

Method

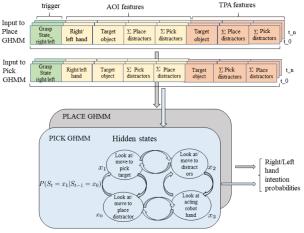
Results

Use Cases

Discussion

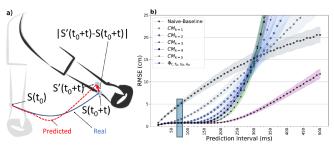
Conclusion

Hand behaviour modelling



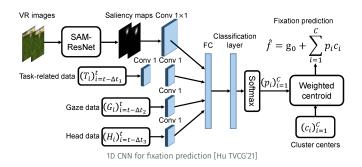
Gaussian hidden Markov models for intention estimation [Belardinelli IROS'22]

Hand behaviour modelling

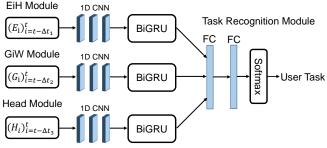


Kinematic regressive model for hand trajectory prediction [Gamage UIST'21]

Head behaviour modelling



Head behaviour modelling



1D CNN and BiGRU for activity recognition [Hu TVCG'22]

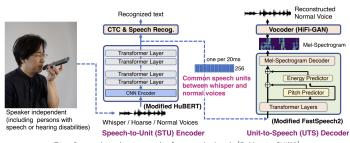
Previous works

- · Only focus on a **single** modality (hand or head)
- Limited to a **specific** XR application

Our work

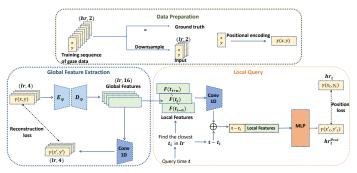
- · Jointly modelling hand and head behaviours
- · Generalisable representations for various XR applications

Learning generalisable representations of speech signals



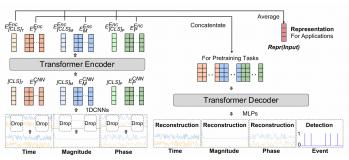
Transformer-based autoencoder for speech signals [Rekimoto CHI'23]

Learning generalisable representations of gaze behaviour



Implicit neural representation learning for gaze data [Jiao UIST'23]

Learning generalisable representations of mouse behaviour



Transformer-based autoencoder for mouse behaviour [Zhang CHI'24]

Previous works

 Learning generalisable representations of speech, gaze, or mouse behaviours

Our work

 Learning generalisable representations of hand and head behaviours

Table of Contents

Research Background

Related Work

Method

Results

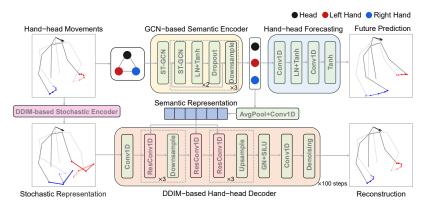
Use Cases

Discussion

Conclusion

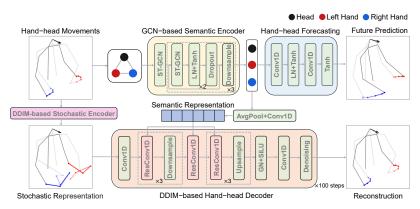
Problem formulation

- · Given a sequence of hand trajectories and head orientations
- · Generate a joint semantic representation of the signals



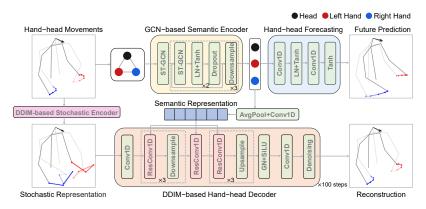
GCN-based semantic encoder

- Treat hand and head as nodes in a graph
- Spatio-temporal GCN for learning semantic representation



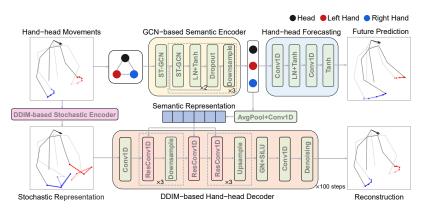
DDIM-based stochastic encoder

· DDIM-based encoder for learning stochastic representation



DDIM-based hand-head decoder

- Use semantic representation as a condition to DDIM
- Use DDIM to **reconstruct** the original hand-head movements



Hand-head forecasting

· Auxiliary training task to refine the semantic representation

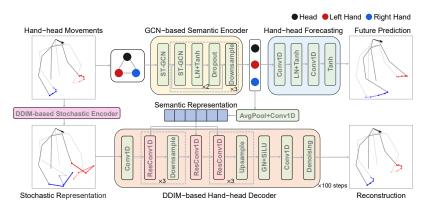


Table of Contents

Research Background

Related Work

Method

Results

Use Cases

Discussion

Conclusion

Reconstruction evaluation settings

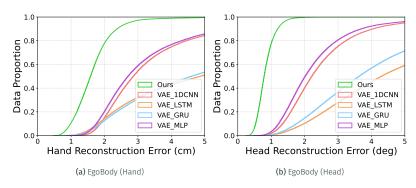
- · Training: EgoBody [Zhang ECCV'22] dataset
- Test: ADT [Pan ICCV'23] and GIMO [Zheng ECCV'22] datasets
- Metric for hand reconstruction: mean position error (cm)
- · Metric for head reconstruction: mean angular error (deg)
- · Sequence length: 40 frames
- Baselines: VAE_1DCNN, VAE_LSTM, VAE_GRU, VAE_MLP

Reconstruction performance

	EgoBody		ADT		GIMO	
	hand	head	hand	head	hand	head
VAE_1DCNN	3.575	2.549	3.876	2.776	4.422	3.100
VAE_LSTM	7.254	5.421	7.933	9.928	8.908	8.060
VAE_GRU	6.776	4.390	7.351	6.161	8.369	6.371
VAE_MLP	3.455	2.338	3.932	2.733	4.310	2.927
Ours	1.664	0.834	1.966	0.707	2.397	1.247

Our method **significantly outperforms** other methods for reconstructing both hand and head signals

Reconstruction performance



Our method achieves **significantly better** performance than other methods in terms of reconstruction error distributions

Ablation study

	EgoBody		ADT		GIMO	
	hand	head	hand	head	hand	head
Ours_1DCNN	2.010	1.070	2.370	1.095	2.883	1.500
Ours_LSTM	1.706	0.842	1.937	0.713	2.587	1.341
Ours_GRU	1.715	0.861	1.964	0.718	2.658	1.377
Ours_MLP	1.840	0.851	2.213	0.822	2.660	1.279
Ours w/o $\it E_{sem}$	56.803	93.361	55.952	92.991	57.005	91.864
Ours w/o $\it E_{sto}$	10.604	11.278	11.889	12.878	11.158	12.042
Ours	1.664	0.834	1.966	0.707	2.397	1.247

Each component contributes to our method's performance

Table of Contents

Research Background

Related Work

Method

Results

Use Cases

Discussion

Conclusion

Use Cases: Identifying Interpretable Hand-head Clusters

Representative hand-head clusters and their semantics

(a) Activity: Instruct to act. The head is facing slightly downward: both hands move noticeably below the head.

(b) Activity: Learn course while sitting. The head is facing slightly upward; both arms are bent and have no large movements.

(c) Activity: Casually chat facing upward: both arms are laid down and remain almost still.

(d) Activity: Take a tape. while standing. The head is The head is facing forward; the left hand has a greater range of motion than the right hand.

Use Cases: Identifying Interpretable Hand-head Clusters

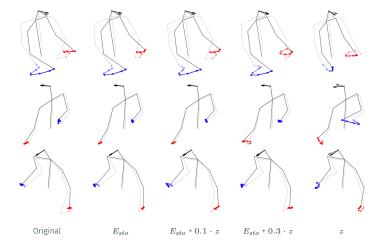
Clustering performance of different methods

	DBI↓	CHI ↑
VAE_1DCNN	2.182	19.582
VAE_LSTM	1.343	26.626
VAE_GRU	1.367	28.892
VAE_MLP	1.837	29.485
Ours	1.141	37.970

Our method outperforms other methods in clustering performance

Use Cases: Generating Variable Hand-head Movements

Generation results



Our method can be used to generate variable hand-head data zhiminghu.net/hu25_haheae &

Use Cases: Serving as a Reusable Feature Extractor

Performance on downstream tasks

	User Identification	Activity Recognition	
	EgoBody	EgoBody	ADT
Chance	8.3%	33.3%	33.3%
VAE_1DCNN	26.3%	48.8%	62.7%
VAE_LSTM	24.9%	47.1%	61.3%
VAE_GRU	28.0%	41.3%	61.0%
VAE_MLP	25.8%	50.5%	60.7%
Ours hand only	18.0%	55.5%	53.6%
Ours head only	25.7%	46.1%	62.5%
Ours w/o forecasting	29.4%	54.7%	63.1%
Ours	29.8%	55.7%	63.9%

Our method consistently outperforms other methods on downstream tasks

Table of Contents

Research Background

Related Work

Method

Results

Use Cases

Discussion

Conclusion

Discussion

Limitations

- Evaluations are limited to existing XR datasets
- Ignore the scene context information

Discussion

Future work

- Evaluate for a **broader** range of activities and environments
- Explore more applications of hand-head joint representations
- · Learn joint representations of hand, head, and scene context

Table of Contents

Research Background

Related Work

Method

Results

Use Cases

Discussion

Conclusion

Conclusion

Main contributions

- A novel representation learning method that contains a GCN-based semantic encoder, a diffusion-based stochastic encoder, and a diffusion-based hand-head decoder
- Extensive experiments on three public XR datasets that demonstrate the effectiveness of our method
- Experiments on three use cases (clustering, generation, and downstream tasks) that validate our method's usefulness

References i

- Belardinelli IROS'22. Intention estimation from gaze and motion features for human-robot shared-control object manipulation. In Proceedings of the 2022 IEEE International Conference on Intelligent Robots and Systems, pages 9806–9813. IEEE, 2022.
- Gamage UIST'21. So predictable! continuous 3d hand trajectory prediction in virtual reality. In The 34th Annual ACM Symposium on User Interface Software and Technology, pages 332–343, 2021.
- Gandrud SAP'16. Predicting destination using head orientation and gaze direction during locomotion in vr. In Proceedings of the 2016 ACM Symposium on Applied Perception, pages 31–38, 2016.
- Hu TVCG'21. Fixationnet: forecasting eye fixations in task-oriented virtual environments. *IEEE Transactions on Visualization and Computer Graphics*, 27(5):2681–2690, 2021.
- Hu TVCG'22. Ehtask: recognizing user tasks from eye and head movements in immersive virtual reality. *IEEE Transactions on Visualization and Computer Graphics*, 2022.
- Jiao UIST'23. Supreyes: Super resolutin for eyes using implicit neural representation learning. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, pages 1–13, 2023.
- Nair TVCG'24. Berkeley open extended reality recordings 2023 (boxrr-23): 4.7 million motion capture recordings from 105,000 xr users. IEEE Transactions on Visualization and Computer Graphics, 2024.
- Pan ICCV'23. Aria digital twin: A new benchmark dataset for egocentric 3d machine perception. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 20133–20143, 2023.
- Rekimoto CHI'23. Wesper: Zero-shot and realtime whisper to normal voice conversion for whisper-based speech interactions. In *Proceedings of the 2023 CHI conference on human factors in computing systems*, pages 1–12, 2023.
- Zhang CHI'24. Mouse2vec: Learning reusable semantic representations of mouse behaviour. In Proc. ACM CHI Conference on Human Factors in Computing Systems (CHI), pages 1–17, 2024. doi: 10.1145/3613904.3642141.

References ii

Zhang ECCV'22. Egobody: Human body shape, motion and social interactions from head-mounted devices. In Proceedings of the 2022 European Conference on Computer Vision, 2022.

Zheng ECCV'22. Gimo: Gaze-informed human motion prediction in context. In Proceedings of the 2022 European Conference on Computer Vision, 2022.

Thank you! Any questions?