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Research Background

Applications of human hand and head movements in XR

Interaction target prediction [Belardinelli IROS'22]
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Research Background

Applications of human hand and head movements in XR
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Redirected walking [Gandrud SAP"16]

zhiminghu.net/hu25_haheae @


https://zhiminghu.net/hu25_haheae

Research Background

Applications of human hand and head movements in XR

Activity recognition [Hu TVCG'22]
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Research Background

Applications of human hand and head movements in XR

y

Figure 1: “Beat Saber” — VR rhythm game. Figure 2: “Tilt Brush” — VR painting app.
User identification [Nair TVCG'24]
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Learning generalisable joint representations of human hand
and head movements in XR

- Jointly modelling hand and head movements in XR has
significant potential for understanding human behaviours

- Generalisable hand-head representations can be reused for
various XR applications

o=

Figure 1: “Beat Saber” — VR rhythm game. Figure 2: “Tilt Brush” — VR painting app.
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Related Work: Hand and Head Behaviour Modelling

Hand behaviour modelling
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Gaussian hidden Markov models for intention estimation [Belardinelli IROS'22]
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Related Work: Hand and Head Behaviour Modelling

Hand behaviour modelling
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Kinematic regressive model for hand trajectory prediction [Gamage UIST'21]
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Related Work: Hand and Head Behaviour Modelling

Head behaviour modelling
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1D CNN for fixation prediction [Hu TVCG'21]
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Related Work: Hand and Head Behaviour Modelling

Head behaviour modelling
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1D CNN and BiGRU for activity recognition [Hu TVCG'22]
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Related Work: Hand and Head Behaviour Modelling

Previous works

- Only focus on a single modality (hand or head)
- Limited to a specific XR application

Our work

- Jointly modelling hand and head behaviours
- Generalisable representations for various XR applications
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Related Work: Generalisable Representation Learning

Learning generalisable representations of speech signals
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Transformer-based autoencoder for speech signals [Rekimoto CHI'23]
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Related Work: Generalisable Representation Learning

Learning generalisable representations of gaze behaviour
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Implicit neural representation learning for gaze data [Jiao UIST'23]
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Related Work: Generalisable Representation Learning

Learning generalisable representations of mouse behaviour
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Transformer-based autoencoder for mouse behaviour [Zhang CHI'24]
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Related Work: Generalisable Representation Learning

Previous works

- Learning generalisable representations of speech, gaze, or
mouse behaviours

Our work

- Learning generalisable representations of hand and head
behaviours
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Problem formulation

- Given a sequence of hand trajectories and head orientations

- Generate a joint semantic representation of the signals

Hand-head Movements
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GCN-based semantic encoder

- Treat hand and head as nodes in a graph

- Spatio-temporal GCN for learning semantic representation

@Head @Left Hand @ Right Hand
Hand-head Movements GCN-based Semantic Encoder Hand-head Forecasting
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Method

DDIM-based stochastic encoder

- DDIM-based encoder for learning stochastic representation
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DDIM-based hand-head decoder

- Use semantic representation as a condition to DDIM
- Use DDIM to reconstruct the original hand-head movements

@Head @Left Hand @ Right Hand

Hand-head Movements GCN-based Semantic Encoder Hand-head Forecasting ~ Future Prediction
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Method

Hand-head forecasting

- Auxiliary training task to refine the semantic representation
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Reconstruction evaluation settings

- Training: EgoBody [Zhang ECCV'22] dataset

- Test: ADT [Pan ICCV'23] and GIMO [Zheng ECCV'22] datasets
- Metric for hand reconstruction: mean position error (cm)
- Metric for head reconstruction: mean angular error (deg)
- Sequence length: 40 frames

- Baselines: VAE_1DCNN, VAE_LSTM, VAE_GRU, VAE_MLP
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Reconstruction performance

EgoBody ADT GIMO
hand head hand head hand head

VAE_IDCNN 3,575 2549 3.876 2776 4.422 3.100
VAE_LSTM  7.254 5421 7933 9.928 8908 8.060
VAE_GRU 6.776 4390 7.351 6.161 8369 6.371
VAE_MLP  3.455 2338 3.932 2733 4310 2927

Ours 1.664 0.834 1966 0.707 2.397 1.247

Our method significantly outperforms other methods for
reconstructing both hand and head signals
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Reconstruction performance
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Our method achieves significantly better performance than
other methods in terms of reconstruction error distributions
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Ablation study

EgoBody ADT GIMO

hand head hand head hand head

Ours_1DCNN 2010 1070 2370 1.095 2.883 1.500
Ours_LSTM 1.706  0.842 1937 0.713 2587 1341
Ours_GRU 1.715 0861 1964 0.718 2658 1377
Ours_MLP 1.840 0851 2213 0822 2660 1.279

Ours w/o Esn, 56.803 93361 55.952 92991 57.005 91.864

Oursw/o Es, 10.604 11278 11.889 12.878 11.158 12.042

Ours 1664 0.834 1966 0.707 2397 1.247

Each component contributes to our method’s performance
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Use Cases: Identifying Interpretable Hand-head Clusters

Representative hand-head clusters and their semantics

(a) Activity: Instruct to act.
The head is facing slightly
downward; both hands
move noticeably below the
head.

e =

(b) Activity: Learn course  (c) Activity: Casually chat  (d) Activity: Take a tape.
while sitting. The head is  while standing. The head is The head is facing forward;
facing slightly upward; both facing upward; both arms  the left hand has a greater
arms are bent and have no are laid down and remain  range of motion than the
large movements. almost still. right hand.
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Use Cases: Identifying Interpretable Hand-head Clusters

Clustering performance of different methods

DBl  CHI*t

VAE_1DCNN 2.182 19.582
VAE_LSTM 1343 26.626
VAE_GRU 1367 28.892
VAE_MLP 1.837 29.485

Ours 1.141 37.970

Our method outperforms other methods in clustering
performance
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Use Cases: Generating Variable Hand-head Movements

Generation results

N
T
R

Our method can be used to generate variable hand-head data
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Use Cases: Serving as a Reusable Feature Extractor

Performance on downstream tasks

User Identification  Activity Recognition

EgoBody EgoBody ADT
Chance 8.3% 33.3% 33.3%
VAE_1DCNN 26.3% 48.8% 62.7%
VAE_LSTM 249% 47.1% 61.3%
VAE_GRU 28.0% 413% 61.0%
VAE_MLP 25.8% 50.5% 60.7%
Ours hand only 18.0% 55.5% 53.6%
QOurs head only 25.7% 46.1% 62.5%
Ours w/o forecasting 29.4% 54.7% 63.1%
Ours 29.8% 55.7% 63.9%

Our method consistently outperforms other methods on

downstream tasks
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Discussion

Limitations

- Evaluations are limited to existing XR datasets

- Ignore the scene context information
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Discussion

Future work

- Evaluate for a broader range of activities and environments

- Explore more applications of hand-head joint
representations

- Learn joint representations of hand, head, and scene context
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Conclusion

Main contributions

- A novel representation learning method that contains a
GCN-based semantic encoder, a diffusion-based stochastic
encoder, and a diffusion-based hand-head decoder

- Extensive experiments on three public XR datasets that
demonstrate the effectiveness of our method

- Experiments on three use cases (clustering, generation, and
downstream tasks) that validate our method’s usefulness
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Thank you!

Any questions?
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