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Fig. 1. In stark contrast to scanpath prediction, which only focuses on predicting sequences of fixations (yellow),
fine-grained gaze sequence generation is the much more challenging task of faithfully and holistically modelling
human gaze behaviour (blue) that resemble the gaze data recorded by eye trackers (normally 30Hz - 1000Hz).
We present DiffGaze — the first method for fine-grained gaze sequence generation on 360◦ images. DiffGaze
aims to model eye events with very different velocity distributions, e.g. fixations and saccades, formulating
the fine-grained gaze sequence generation task as a conditional diffusion process conditioned on the image
features.

Modelling human gaze behaviour on 360◦ images is important for various human-computer interaction
applications. However, existing methods are limited to predicting discrete fixation sequences or aggregated
saliency maps, thereby neglecting fine-grained gaze behaviour such as saccadic eye movements that can
be captured by commercial eye-trackers. We introduce a more challenging task—fine-grained gaze sequence
generation. This task aims to generate eye-tracker-like gaze data for given stimuli. We propose DiffGaze, a
diffusion-based method for generating realistic and diverse fine-grained human gaze sequences conditioned on
360◦ images.We evaluate DiffGaze on two 360◦ image benchmarks for fine-grained gaze sequence generation as
well as two downstream tasks, scanpath prediction and saliency prediction. Our evaluations show that DiffGaze
outperforms the fine-grained gaze generation baselines in all tasks on both benchmarks. We also report a
21-participant survey study showing that our method generates gaze sequences that are indistinguishable from
real human sequences. Taken together, our evaluations not only demonstrate the effectiveness of DiffGaze but
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also point towards a new generation of methods that faithfully model the rich spatial and temporal nature of
natural human gaze behaviour.

CCS Concepts: • Computing methodologies→ Artificial intelligence;Machine learning; •Human-
centered computing;

Additional Key Words and Phrases: Gaze Behaviour Modelling, Scanpath Prediction, Eye Tracking, Eye
Movement Synthesis
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1 INTRODUCTION
With recent advances in camera technology, capturing high-resolution 360◦ images enables a
new generation of immersive experiences in virtual reality (VR). This potential has led to rising
consumer interest in adopting this new technology and growing research efforts in understanding
how humans perceive and explore these 3D virtual environments [44, 49, 50]. To understand and
enhance VR experiences, computational user modelling – a core research area within interactive
intelligent system research – is key. User modelling involves learning computational representations
of user behaviours, enabling predictions, personalisation, and adaptation of interactive intelligent
systems to suit human needs and capabilities better. While traditional human-computer interaction
has long focused on user modelling tasks in desktop or mobile contexts (e.g. typing modelling
[47], mouse movement modelling [67], gaze modelling [9]), immersive environments present new
challenges and opportunities for modelling user behaviour in richer and more complex ways.

In VR, visual attention is a crucial aspect of user behaviour that provides insights into cognitive
and perceptual processes during interactions. Eye tracking technology, which captures gaze data to
reveal where a person is looking, is widely recognised as a valuable tool for studying attention
and decision-making in physical and virtual spaces. While eye tracking has become more widely
available and affordable, [27, 56] – and is integrated into an ever-increasing number of VR headsets
– collecting gaze data, particularly at scale, remains tedious and time-consuming and is often not
feasible at all. This has led to a strong interest in HCI and adjacent fields in computational models
that can predict human gaze behaviour without specialised eye tracking hardware. Such models of
visual attention are essential not only for understanding perception in VR but also for developing
applications that adapt to users’ visual behaviour.
Within HCI, computational models of gaze have been used to support various applications,

including adaptive user interfaces [21], predicting users’ cognitive load [52]. Despite these advances,
prior works on computational modelling of visual attention on 360◦ images have focused on
saliency [7, 50] or scanpath prediction [1, 37, 53]. Despite significant advances, both tasks still only
tackle a simplified problem. Saliency prediction yields one or multiple fixation density maps, which
do not capture the temporal nature of human gaze behaviour. Scanpath prediction only yields
sequences of gaze fixations, neglecting those gaze samples between fixations and raw gaze samples
that form the fixations. As a result, neither of these tasks – nor any existing method developed in
the past to tackle them – allow to faithfully model the rich spatial and temporal nature of natural
human gaze behaviour on 360◦ images that are akin to the gaze data captured by commercial eye
trackers operating at a typical sampling rate of at least 30 Hz.
To address these limitations, we introduce a challenging task – fine-grained gaze sequence

generation, which aims to generate temporally dense gaze data that resembles the continuous
output of commercial eye trackers, usually with a sampling rate from 30Hz to 1,000Hz. Unlike
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traditional scanpath prediction that models only discrete fixation locations, fine-grained sequences
capture the continuous trajectory of the eye, including the raw gaze samples that form and occur
between fixations. The key challenge of this task is to model eye movements with various velocity
distributions.
Inspired by recent success in using diffusion models to model complex distributions across

different domains [28, 45, 54, 68], we propose DiffGaze – the first generative method to model
fine-grained human gaze behaviour on 360◦ images. DiffGaze is based on a score-based denoising
diffusion model [54] that is conditioned on the features extracted from 360◦ images. Taking 30Hz
as an example, we evaluate our method on fine-grained gaze sequence generation on two datasets,
Sitzmann [50] and Salient360! [42, 43]. Since fixations are encoded in fine-grained gaze sequence
and can be detected using eye event detection algorithms, such as Identification by Velocity-
Thresholding [46], we further evaluate the performance of DiffGaze on two downstream tasks,
scanpath prediction and saliency prediction. The results show that our method achieves state-
of-the-art performance on fine-grained gaze sequence generation and scanpath prediction and
outperforms other fine-grained gaze sequence generation baselines in saliency prediction. We also
show that our model reproduces natural eye movement characteristics in humans, such as the mean
number of saccades, mean saccade velocity, mean number of fixations, or mean fixation duration.
Finally, through an online user study with 21 participants, we show that the fine-grained gaze
sequences generated by DiffGaze are practically indistinguishable from real human gaze behaviour.
Taken together, DiffGaze represents a novel approach in computational user modelling within HCI,
demonstrating how generative models can faithfully capture the complex, fine-grained aspects of
human gaze in VR. As such, our method and the fine-grained gaze sequence generation task not
only have the potential to unify long-standing, yet so far largely separated, efforts on saliency and
scanpath prediction. Our method also promises significant improvements in a range of applications
that can directly build on it, such as high-frequency animation of virtual humans, synthesising eye
tracking datasets in VR or assisting designers to improve the design of VR environments.
The specific contributions of our work are three-fold:

(1) We propose DiffGaze – the first generative method to model fine-grained human gaze
sequences on 360◦ images.

(2) Through extensive evaluations, we show that our method achieves state-of-the-art perfor-
mance on fine-grained gaze sequence generation and scanpath prediction.

(3) Through an online survey study with 21 participants, we show that the gaze sequences
generated by DiffGaze are practically indistinguishable from real human gaze behaviour.

2 RELATEDWORK
Our work on fine-grained gaze sequence generation is related to previous work on 1) saliency
modelling, 2) scanpath prediction on 360◦ images, and 3) realistic eye movement generation.

2.1 Saliency Modelling
Saliency modelling aims at predicting the spatial distribution of human gaze fixations, also known
as saliency map, on an image and has been extensively studied in the past few decades. Traditional
saliency prediction methods usually focus on predicting the saliency map of 2D images and can be
classified into bottom-up and top-down approaches. Bottom-upmethods predict saliencymaps using
low-level image features such as intensity, colour, and orientation [11, 20]. Top-down approaches
use high-level features such as specific tasks and context information to predict saliencymaps [5, 63].
Recently, with the development of virtual reality, human visual saliency on 360◦ images has become
an essential research topic in computer vision. Specifically, Sitzmann et al. proposed to combine
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existing 2D saliency predictors with a central bias to generate saliency maps for 360◦ images [50]
while Chen et al. proposed a local-global bifurcated deep network for saliency prediction on 360◦
content [7]. However, saliency prediction methods can only model the spatial distribution of human
visual attention and ignore the temporal dynamics. To solve this limitation, researchers focused on
scanpath prediction that models the temporal sequence of gaze fixations.

2.2 Scanpath Prediction on 360◦ Images
Scanpath prediction aims to generate a discrete sequence of eye gaze fixations from a given
image and has been extensively explored in vision research [2, 21, 35, 60]. In the rapidly evolving
virtual reality domain, predicting scanpaths on 360◦ images has emerged as a pivotal research
topic. Researchers have explored directly adapting scanpath prediction methods from 2D images,
such as DeepGaze III [30] and CLE [3], to 360◦ images. Additionally, methods exclusive to 360◦
images including SaltiNet [1], ScanGAN360 [37], ScanDMM [53], and Pathformer3D [41] have been
proposed. The key idea of these works can be divided into two categories.
(1) Sample fixation locations from predicted saliency information. CLE [3] samples fixation

locations from a saliency map through a three-stage processing, which relies on a centre-bias model,
a context/layout model, and an object-based model, respectively; DeepGaze III [30] takes previous
fixation history to predict the next fixation on saliency feature map; SaltiNet [1] samples fixations
from predicted saliency volumes, i.e. a temporal-aware representation of saliency information, of a
given image. These methods did not consider fixation durations, but only sampled the durations
from the duration distribution [1].

(2) End-to-end approaches, i.e. directly generate fixation locations. Variant lengths in ground truth
human scanpaths pose an issue for training end-to-end models like generative adversarial networks
(GANs), which require a fixed output length. To tackle this problem, Martin et al. simplified the
task by predicting 1Hz gaze data over a fixed duration (generating one gaze location per second)
and proposed ScanGAN360 [37], a GAN network combined with a dynamic time warping-based
loss function. Following the same setting, Sui et al. presented ScanDMM – a deep Markov model
to generate 1Hz gaze data from 360◦ images [53]. The assumption behind these methods is that
all 1Hz gaze samples are fixations lasting for 1 second. The generated fixation numbers are fixed
given a duration, which is unrealistic compared with human scanpaths with variant lengths. In
addition, the 1Hz gaze samples are not guaranteed to belong to fixations they might belong to
other types of eye movements.

As summarized in Table 1, previous gaze modeling methods primarily concentrate on generating
discrete gaze fixation sequences, i.e. scanpaths, neglecting the fine-grained nature of human eye
movements. In contrast, our work aims to predict fine-grained gaze sequences from 360◦ images
that resemble the data recorded using eye trackers rather than only generating discrete gaze
fixations, thereby capturing a more realistic representation of human visual attention. The fixations
and saccades can also be detected in our generated fine-grained gaze sequence by applying eye
movement detection algorithms like Identification by Velocity-Thresholding [46]. Given a fixed
duration, the number of fixations is variable in our method, and the duration of each fixation can be
calculated by multiplying the number of samples forming the fixation by the sampling frequency.

2.3 Eye Movement Generation
Generating realistic eye movements has emerged as an important research topic in human-computer
interaction given its relevance for several applications, such as virtual character animation or human
attention analysis. In early work, Lee et al. proposed to use an empirical model of saccades and a
statistical model of eye-tracking data to generate eye movements [34] while Lan et al. presented a
novel set of psychology-inspired generative models to synthesise eye movements in reading, verbal
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Table 1. Comparison of abilities of gaze behaviour modelling methods for 360◦ images. DiffGaze is the first
method to generate all kinds of gaze behaviours including raw gaze samples at 30 Hz, fixations, saccadic
eye movements, fixation duration, and variant number of fixations (Fixation Count). EM: eye movements, ?:
unsure eye movement type.

Method Sampling Frequency Saccadic EM Fixation Fixation Duration Fixation Count

End-to-end [37, 53] 1Hz ? ? 1 second fixed

Saliency-based [1, 3, 30] × × ✓ sample from distribution variant

Fine-grained EM (DiffGaze) 30Hz ✓ ✓ detect from raw gaze variant

communication, and scene perception [31]. Considering the strong correlation between eye and
head movements, Sitzmann et al. [50] and Rai et al. [42] proposed to use head orientation as a proxy
to eye gaze. Hu et al. proposed to generate realistic eye movements in free-viewing situations from
users’ head movements and scene content [18, 19] and to predict eye movements using task-related
information in task-oriented situations [16, 17]. Xu et al. proposed to predict eye movements in
graphical user interface from users’ mouse and keyboard inputs while Koulieris et al. used game
state variables in video games to predict users’ gaze positions [29]. However, existing methods
usually rely on other input modalities, such as head movements, mouse and keyboard inputs, to
generate eye movements. In stark contrast, we generate realistic and fine-grained gaze sequences
only using the information available in 360◦ images.

3 METHOD
An overview of our method is shown in Figure 2. Human gaze behaviour consists of a mix of
rapid eye movements and predominantly slower ones, resulting in a complex and diverse velocity
distribution. To better capture these dynamics, we leverage diffusion models, which have been
shown to effectively model complex distributions across domains [15, 24, 25, 28, 68]. We formulate
fine-grained gaze sequence generation on 360◦ images as a conditional diffusion task. That is,
DiffGaze is trained to denoise human gaze data corrupted by Gaussian noise, conditioned on the
spherical convolution of a 360◦ image. During diffusion sampling, DiffGaze generates continuous
gaze data from random noise and extracted image features.

3.1 Problem Definition
Eye tracking data are usually denoted as a sequence of two-dimensional locations (𝑖, 𝑗). Projected
on 360◦ images, these locations are represented by their latitude and longitude (𝜙, 𝜆), where
𝜙 ∈

[
−𝜋

2 ,
𝜋
2
]
and 𝜆 ∈ [−𝜋, 𝜋]. However, this representation introduces discontinuities at the image

borders and leads to periodic values, causing problems during training. For example, 𝜆 and 𝜆 + 2𝜋
represent the same meridian, including the two image boarders (𝜆 = ±180◦). Thus, we instead
project the image onto a unit sphere and represent each gaze point as a three-dimensional vector
(𝑥,𝑦, 𝑧) following [37]:

𝑥 = 𝑐𝑜𝑠 (𝜙)𝑐𝑜𝑠 (𝜆), 𝑦 = 𝑐𝑜𝑠 (𝜙)𝑠𝑖𝑛(𝜆), 𝑧 = 𝑠𝑖𝑛(𝜙) (1)

Given a 360◦ image, our goal is to generate a fine-grained gaze sequence—that is, a high-frequency,
temporally dense sequence of gaze points that approximates the raw output of a commercial eye
tracker. Formally, we denote a fine-grained gaze sequence as 𝑋 ∈ R3×𝐿 , where 𝐿 is the number of
gaze samples and each column corresponds to a gaze vector (𝑥,𝑦, 𝑧)⊤ at a particular timestamp.
These sequences are sampled at a fixed rate and capture both slow and fast eye movements, different
from scanpaths that only contain sparse fixation locations. The generated sequence is projected
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Fig. 2. Overview of our proposed DiffGaze method. We cast continuous gaze sequence generation as a
conditional diffusion task. Our model is trained to recover the original gaze trajectory from the corrupted,
noisy data. The condition to guide this diffusion process includes a spherical convolution for the 360◦ image,
and side information (time and feature embedding). We apply two Transformers to learn both the temporal
and spatial attention. Please refer to the text for details about the architecture, diffusion process and the
loss function. 1DCNN refers to the one-dimensional convolutional neural network and FC refers to the
fully-connected layer.

back to the latitude-longitude representation (𝜙, 𝜆) for evaluation and visualisation by

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑧,
√︁
𝑥2 + 𝑦2), 𝜆 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦, 𝑥) (2)

3.2 Diffusion Model
At its core, DiffGaze uses a denoising diffusion model that has recently shown impressive results
in generative image tasks [54]. Diffusion models are probabilistic models, consisting of a forward
and a reverse process. The aim is to learn a distribution 𝑝𝜃 (𝑋 ) to approximate the data distribution
𝑞(𝑋 ). The forward process gradually adds Gaussian noise to the original data 𝑋0 for 𝑇 timesteps.
At each step 𝑡 ∈ [1,𝑇 ], the sampling of 𝑋𝑡 can be obtained via a Markov chain:

𝑞(𝑋𝑡 | 𝑋𝑡−1) = N(
√︁
1 − 𝛽𝑡𝑋𝑡−1; 𝛽𝑡 I) (3)

where 𝛽𝑡 ∈ [0, 1] is a scalar representing the noise level. Using 𝛼𝑡 =
∏𝑡

𝑖=1 (1 − 𝛽𝑖 ), the noise
distribution at any intermediate timestamp can be obtained by

𝑞(𝑋𝑡 | 𝑋0) = N(𝑋𝑡 ;
√
𝛼𝑡𝑋0, (1 − 𝛼𝑡 )I) (4)

Hence, 𝑋𝑡 is
𝑋𝑡 =

√
𝛼𝑡𝑋0 + (1 − 𝛼𝑡 )𝜖 (5)

where 𝜖 ∼ N(0, I). In the reverse process, a generative model 𝜃 denoises 𝑋𝑡 to recover 𝑋0 by the
transition:

𝑝𝜃 (𝑋𝑡−1 | 𝑋𝑡 ) = N(𝑋𝑡−1; 𝜇𝜃 (𝑋𝑡 , 𝑡), 𝜎𝜃 (𝑋𝑡 , 𝑡)I) (6)
𝜎𝜃 (𝑋𝑡 , 𝑡) is fixed to a constant 𝛽𝑡 for easier optimisation. 𝜇𝜃 (𝑋𝑡 , 𝑡) can be decomposed into the
linear combination of 𝑋𝑡 and a denoising function 𝜖𝜃 (𝑋𝑡 , 𝑡), which is learnt via the following
optimisation [15]:

𝑚𝑖𝑛
𝜃

L(𝜃 ) =𝑚𝑖𝑛
𝜃

E𝑋0∼𝑞 (𝑋0 ),𝜖∼N(0,I),𝑡 ∥𝜖 − 𝜖𝜃 (𝑋𝑡 , 𝑡)∥22 (7)
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3.3 Conditioning Mechanism for 360◦ Images
Since objects in the image, along with their semantics and location, have a significant influence on
human gaze behaviour, it is essential to consider image features when predicting gaze patterns.
Therefore, we use the 360◦ image itself as a condition to the diffusion process. More specifically,
given that gaze points are projected to a spherical space (Equation 1), we propose a spherical
embedding of 360◦ image as the condition in the reverse diffusion process. Following [37], we
encode the information of the image into 𝑐 ∈ 𝑅𝑚×1 using the sphere convolutional neural network (S-
CNN) [12] that can handle space-varying distortions resulting from the equirectangular projection.
In S-CNN, we apply a CoordConv layer [36] to extract the spatial embedding. CoordConv adds
extra coordinate channels to make convolutions more robust to coordinate transformations, with
few parameters and efficient computation. After introducing the condition 𝑐 to the reverse process,
the goal is to approximate the learnt distribution 𝑝𝜃 (𝑋 | 𝑐) to the genuine distribution 𝑞(𝑋 | 𝑐).
Correspondingly, we extend the reverse process in Equation 6 as

𝑝𝜃 (𝑋𝑡−1 | 𝑋𝑡 , 𝑐) = N(𝑋𝑡−1; 𝜇𝜃 (𝑋𝑡 , 𝑡 | 𝑐), 𝜎𝜃 (𝑋𝑡 , 𝑡 | 𝑐)I) (8)

with the training objective

𝑚𝑖𝑛
𝜃

L(𝜃 ) =𝑚𝑖𝑛
𝜃

E𝑋0∼𝑞 (𝑋0 ),𝜖∼N(0,I),𝑡 ∥𝜖 − 𝜖𝜃 (𝑋𝑡 , 𝑡 | 𝑐))∥22 (9)

3.4 DiffGaze Architecture
An overview of DiffGaze architecture are shown in Figure 2. DiffGaze takes the noisy gaze data
𝑋𝑡 ∈ 𝑅𝐿×3, the conditioning 360◦ image, and the time step 𝑡 as inputs to predict the added noise 𝜖
at the time step for the denoising reverse process.

The key to generating fine-grained gaze data is learning the relationship between image features
and gaze locations. To achieve this, DiffGaze leverages a commonly used feature extractor for 360◦
images, S-CNN [12], to extract spatial features. To ensure fair comparison with prior work [37, 53],
we retain all layers of the S-CNN except the final one, which is modified to produce output features
with the same shape as𝑋𝑡 . We then apply early fusion by concatenating the extracted image features
with 𝑋𝑡 along a new dimension, resulting in a tensor of shape (2, 𝐿, 3). Before further processing,
this fused tensor is passed through a 1D convolutional layer (kernel size 1) to increase the number
of channels, yielding a tensor of shape (𝐶, 𝐿, 3), where 𝐶 denotes the number of channels.

Following commonly used diffusion model designs [15, 28, 54, 68], DiffGaze contains 𝑁 residual
layers. Prior work has shown that Transformer-based architectures are more effective than convolu-
tional layers at capturing complex temporal and spatial patterns in time-series data [54]. As human
gaze trajectories are time-series in nature, we adopt a similar architecture to CSDI [54], equipping
each residual layer with two separate one-layer Transformer encoders: a Temporal Transformer,
which models dependencies along the time axis (𝐿), and a Spatial Transformer, which operates
across the three gaze dimensions (𝑥,𝑦, 𝑧). In contrast to CSDI, which considers only self-attention
within the time-series, our design additionally incorporates image features alongside gaze data.
This enables the attention mechanism to learn temporal dependencies as well as relationships
between visual content and gaze patterns across both time and space.

At the beginning of each residual layer, we add a diffusion embedding of the current time step 𝑡 to
the fused input tensor (shape: (𝐶, 𝐿, 3)) via element-wise addition. This tensor is then processed by
the two Transformers. The output is subsequently upsampled to (2𝐶, 𝐿, 3) using a 1D convolutional
layer with kernel size one.
We incorporate two types of side information, following prior work [28, 54]. First, we encode

the timestamp sequence 𝑆 = {𝑆1, ..., 𝑆𝐿} using a 128-dimensional positional encoding [59, 69]:
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𝑆𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝑆𝑙 ) = (𝑠𝑖𝑛(𝑆𝑙/𝜏0/64), ..., 𝑠𝑖𝑛(𝑆𝑙/𝜏63/64),
𝑐𝑜𝑠 (𝑆𝑙/𝜏0/64), ..., 𝑐𝑜𝑠 (𝑆𝑙/𝜏63/64))

(10)

where 𝑙 ∈ [1, 𝐿], 𝜏 = 10, 000. Second, we use a 16-dimensional categorical embedding for the three
gaze features (𝑥,𝑦, 𝑧), as in [54]. We concatenate these two embeddings and pass them through a
1DCNN layer (kernel size one), producing a side information tensor of shape (2𝐶, 𝐿, 3). This side
information is fused with the main feature tensor via element-wise addition. The result is passed
through a gated activation unit [28, 57, 58], followed by two 1DCNN layers (kernel size one). The
output of this block serves both as input to the next residual layer and as a residual connection.
Finally, the output of the last residual layer, with shape (𝐶, 𝐿, 3), is projected to the predicted noise
tensor of shape (𝐿, 3) using a final 1DCNN layer.

4 EXPERIMENTS
4.1 Datasets
Most existing scanpath and saliency datasets for 360◦ do not offer real gaze data captured using
an eye tracker to train and evaluate attention models. Two noteworthy exceptions are Sitzmann
[50] and Salient360! [42, 43]. The Sitzmann dataset contains 22 images with 1,980 gaze trajectories
from 169 participants, recorded at a sampling rate of 120Hz for 30 seconds per image. Salient360!
contains binocular gaze data of between 40 - 42 observers looking at 85 images. Gaze data was
recorded at a sampling rate of 60Hz for 25 seconds per image. Following previous works on scanpath
prediction [37, 53], we used the same 19 images from the Sitzmann dataset for training and the
remaining three for testing. We used the entire Salient360! dataset as a test set for cross-dataset
evaluation.
In eye tracking, the number of gaze samples should (roughly) be the sampling frequency mul-

tiplied by the recording duration. We discarded recordings with fewer gaze samples than the
minimum number of gaze samples. For Sitzmann, we set the minimum number to 3,481, corre-
sponding to 29 seconds of viewing time. For Salient360!, we set the minimum number to 1,441,
corresponding to 24 seconds of viewing time. We opted to generate fine-grained gaze sequences at
a sampling frequency of 30Hz as commonly offered by commercial mobile eye trackers. To this end,
we first downsampled the data from both datasets to 30Hz. To fix the output size for the diffusion
model, the downsampled data was truncated to 871 samples for Sitzmann and 721 samples for
Salient360!.

4.2 Experimental Setup
Implementation Details.We used the downsampled Sitzmann dataset to train our model. Similar
to [53], we resized all images to a resolution of (128, 256) before training. We adapted the diffusion
process parameters from CSDI [54] which includes four residual layers, 𝐶 = 64 residual channels,
and eight attention heads for each Transformer, and set the noise level range from 0.0001 to 0.5. We
also used a quadratic schedule to update the noise level at each diffusion step, following [39, 51, 54]
to enhance the quality of the generated samples. We set the total diffusion step 𝑇 = 200, the batch
size as 16, and the learning rate to 0.001. We used the Adam optimiser to train our model for
500 epochs, and reduce the learning rate by a factor of 0.1 at epoch 375 and epoch 450. All the
experiments were run on a single NVIDIA V100 32GB GPU.
Baselines. To the best of our knowledge, DiffGaze is the first method for generating 30Hz

fine-grained gaze sequences on 360◦ images. The closest methods to ours are ScanGAN360 [37] and
ScanDMM [53] but they were designed for generating 1Hz gaze sequences to simulate the human
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Table 2. Quantitative evaluation of fine-grained gaze sequence generation methods on Sitzmann and
Salient360! dataset in terms of Levenshtein distance (LEV), Dynamic Time Warping (DTW), mean abso-
lute error (MAE), and root mean squared error (RMSE). Best results are shown in bold.

Dataset Method LEV ↓ DTW ↓ MAE ↓ RMSE ↓
mean best mean best mean best mean best

Sitzmann [50]

Human 1,167† 992† 1,708,925† 944,914† 1,587† 1,123† 2,418† 1,813†

ScanGAN360 [37] 1,406 1,327 2,084,017 1,709,852 1,795 1,422 2,532 2,051
ScanDMM [53] 1,293 1,161 2,139,311 1,467,909 1,710 1,279 2,519 1,966
DiffGaze (Ours) 1,272 1,148 1,785,109 1,163,822 1,623 1,195 2,365 1,810

Salient360! [42, 43]

Human 1,060† 928† 360,523† 215,671† 402† 285† 587† 434†

ScanGAN360 [37] 1,163 1,084 421,229 337,640 435 344 602 478
ScanDMM [53] 1,092 951 441,725 285,542 421 301 611 456
DiffGaze (Ours) 1,079 957 380,857 245,206 413 298 591 439

† Gaze sequences are not compared with themselves
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Fig. 3. Qualitative comparison of fine-grained gaze data generation models in four scenes. From left to right:
gaze samples from a human observer, generated 30Hz eye movement sequences from the ScanGAN360
method, ScanDMM, and our proposed model. From top to bottom: the Room and the Robots from the
Sitzmann dataset, the Museum and Resort from the Salient360! dataset.

scanpaths. We adapted these methods by changing their output resolutions and by retraining them
using our settings. We used the same hyperparameters as given in the original papers in retraining.

4.3 Fine-grained Gaze Sequence Generation
We conducted an experiment to assess the quality of the gaze sequences generated by our method
and the baselines at 30 Hz, compared to the human ground truth. All methods are generative models
that produce diverse gaze sequences, therefore we generated 100 sequences per method for each
image to reduce the sampling bias.

Evaluation Metrics. We evaluated the generated gaze sequences using four time-series metrics
commonly used in scanpath prediction and gaze data super-resolution: Levenshtein distance (LEV),
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dynamic time warping (DTW), mean absolute error (MAE), and root mean square error (RMSE)
[23, 37, 53]. These metrics assess the temporal alignment, spatial distance, and overall deviation
between two gaze sequences, with lower values indicating better performance. All gaze locations
were converted to image space for metric calculation. For the Sitzmann dataset, metrics were
calculated on the original image size due to uniform resolution. For the Salient360! dataset, metrics
were calculated on the provided saliency maps’ size (1024, 2048) due to varying image sizes.

Given that each image has multiple human ground truth gaze sequences and multiple generated
gaze sequences, we report two numbers for each metric: best and mean, following prior work [60].
These numbers capture two important aspects of the quality of the generated sequences. The best
number reflects how realistic the generated gaze sequence is, i.e., if there exists a human gaze
sequence that is close to the generated one. We computed the best number as follows: For each
generated sequence, we computed each metric to all ground truth sequences and recorded the
best score for each metric. We then averaged the best scores over all generated sequences for each
image and reported the result. In contrast to best, the mean number reflects how representative
the generated gaze sequence is, i.e., how well it captures the average behaviour of all human gaze
sequences. We computed the mean number as follows: For each generated sequence, we computed
each metric with respect to all ground truth sequences and recorded the average score for each
metric. Then we averaged the means over all generated sequences and reported the result.

To compare our results with human performance, we also computed a human baseline [62] for
each metric. For each image, we selected one ground truth sequence and computed the metrics with
the remaining ground truth sequences. We recorded the best score for each metric and averaged
them over all ground truth sequences for each image. We then calculated the mean over all images
for the human baseline.
Quantitative Results. Table 2 shows the results on both datasets. DiffGaze demonstrates

superior performance on the Sitzmann dataset across all metrics and outperforms other baselines
on three out of four metrics on Salient360!. This shows our method’s effectiveness in generating
fine-grained gaze sequences that closely resemble human behaviour.
Qualitative Results. Figure 3 presents examples of the generated gaze sequences. The gaze

samples produced by ScanGAN360 and ScanDMM did not resemble the human eye behaviour
of exploring 360◦ images. In particular, ScanGAN360 created many rapid eye movements across
the images, unlike the human ground truth. The samples produced by ScanDMM concentrate
on a few large regions on the images. This suggests that these two methods do not capture the
relation between fixation and saccade in human eye movements. On the other hand, DiffGaze
shows similar behaviours to the human ground truth. Additional qualitative results can be found
in the supplementary material.

We also observed that visual inspection of human gaze sequences reveals significant variation in
gaze patterns, even when viewing the same image. This variability results in poor performance of
human agreement on existing scanpath metrics and time-series metrics (see Table 2). Therefore,
these metrics’ comparison with human agreement may not fully reflect the model’s performance.
Survey Study. To gain a more nuanced understanding of model performance, we designed a

survey, following prior work in scanpath prediction [60], that involved users in rating visualisations
of different fine-grained gaze trajectories. The user study was structured into three stages:

• Training: we randomly picked three 360◦ images from both dataset. For each image, we
showed 10 randomly chosen human gaze sequences to familiarise participants with the visual
appearance of real human gaze data.

• Rating: Participants were then asked to rate the realism of gaze sequences on a scale of 1 to
10, where 1 meant highly unrealistic, and 10 highly realistic. We randomly selected 20 images
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Fig. 4. User ratings of the realism of gaze sequences generated by Human, DiffGaze, ScanDMM, and Scan-
GAN360. 1: most unrealistic, 10: most realistic.

from both datasets. For each image, we randomly showed one real human gaze sequence,
one sequence from our method, ScanDMM, and ScanGAN360, respectively. To minimise any
potential positional bias, the presentation order of the four visualisations was randomised.

• Validation: We randomly selected 10 images from both datasets. For each image, we randomly
picked four real human gaze sequences and asked participants to rate them in the same
way as before. We then computed the average rating for each participant. We discarded all
participants with an average rating lower than five.

The user study is approved by the ethics committee at the local university. We recruited 21
participants (nine females and 12 males) from different universities for the study, 15 of them
were familiar with gaze data or had participated in eye tracking studies. The study was done
online. No personal information of participants was collected. Figure 4 shows the average user
ratings for realism achieved by the three different methods. The average rating of DiffGaze (7.54) is
significantly higher than those of ScanDMM (t (63) = 2.19, p<0.001) and ScanGAN360 (t (93) = 1.25,
p<0.001). Although the average of DiffGaze is slightly lower than the humans (7.54 vs 8.09), the
median (8) is the same. This indicates that in many cases the generated fine-grained gaze sequences
of our method are indistinguishable from real human sequences.
Analysis of Eye Movements.We further evaluated DiffGaze by comparing the fixation and

saccade statistics of the generated gaze sequences with human ground truth. We used a velocity-
based saccade detection algorithm [14] to segment the gaze sequences in spherical coordinates into
fixations and saccades, with a velocity threshold 𝜆 = 2.

Table 3 shows the results of this analysis. In terms of saccade statistics, DiffGaze and ScanGAN360
yield similar mean saccade velocities as human observers in both datasets. However, ScanDMM and
ScanGAN360 generate more saccades than human observers, generating more frequent attention
shifts. DiffGaze achieves a comparable number of saccades as human observers, suggesting more
natural gaze behaviour. Moreover, ScanDMM and ScanGAN360 generate more fixations than human
observers, with shorter mean fixation durations. DiffGaze produces more realistic fixation statistics
in the Salient360! dataset, with a similar number and duration of fixations as human observers. On
the Sitzmann dataset, DiffGaze generates slightly fewer fixations with slightly longer duration than
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Table 3. Eye movement statistics on Sitzmann and Salient360! dataset. Numbers closest to human statistic
are marked in bold.

Dataset Method Mean saccade Mean saccade Mean fixation Mean fixation
number velocity (◦/s) number duration (s)

Sitzmann [50]

Human 47.73 ± 9.86 224.23 ± 24.66 41.11 ± 7.29 0.69 ± 0.13

ScanDMM [53] 103.28 ± 32.85 192.12 ± 42.52 60.89 ± 16.45 0.46 ± 0.16
ScanGAN360 [37] 154.93 ± 14.46 217.24 ± 6.06 91.22 ± 9.82 0.26 ± 0.03
DiffGaze (Ours) 41.50 ± 9.11 220.97 ± 28.05 32.80 ± 6.91 0.88 ± 0.22

Salient360! [42, 43]

Human 44.05 ± 11.70 209.01 ± 24.73 30.94 ± 7.25 0.79 ± 0.30

ScanDMM [53] 91.34 ± 29.46 193.54 ± 46.33 54.68 ± 15.45 0.44 ± 0.15
ScanGAN360 [37] 144.32 ± 23.41 216.13 ± 7.62 84.80 ± 13.25 0.29 ± 0.06
DiffGaze (Ours) 35.94 ± 8.35 219.76 ± 29.85 28.58 ± 6.42 0.84 ± 0.21
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Fig. 5. Qualitative comparison to scanpath prediction models in four scenes. From left to right: scanpaths
obtained by a human observer, generated 30Hz scanpaths obtained by ScanGAN360, ScanDMM, and the
proposed model. From top to bottom: the Room and the Square from Sitzmann dataset, the Museum and
Autumn from Salient360! dataset.

human observers, but is still closer to the ground truth than the baselines. Taken together, these
results show that DiffGaze can generate gaze sequences with characteristics that are highly similar
to real human gaze behaviour.

4.4 Scanpath Prediction
Given that fixations and their durations are readily encoded in fine-grained gaze sequences, to
further evaluate the quality of fixations within the generated fine-grained gaze sequences, we
also evaluated DiffGaze on scanpath prediction. We used the scanpaths obtained from our gaze
sequence extraction procedure (Section 4.3) as ground truth on the Sitzmann dataset, given it
does not provide them originally. We discarded fixations shorter than 150 ms, following [50] and
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Table 4. Quantitative evaluation of scanpath prediction methods on Sitzmann and Salient360! dataset in
terms of Levenshtein distance (LEV), Dynamic Time Warping (DTW), and Recurrence (REC). Best results of
each dataset are shown in bold.

Dataset Method LEV ↓ DTW ↓ REC ↑
mean best mean best mean best

Sitzmann [50]

Human 55.82† 44.89† 73,751† 43,655† 0.108† 0.541†

Human (1Hz) 43.64 35.51 35,712 24,088 0.459 1.393
ScanGAN360 (1Hz) [37] 54.29 41.92 70,764 46,247 0.044 0.361
ScanDMM (1Hz) [53] 54.29 41.25 71,250 45,452 0.049 0.375
DiffGaze (1Hz, Ours) 54.88 41.45 71,861 45,466 0.046 0.378

Saltinet [1] 64.73 54.35 89,722 66,610 0.022 0.249
DeepGaze III [30] 59.48 51.94 78,083 57,813 0.071 0.407
CLE [3] 63.01 53.63 83,846 46,037 0.091 1.313
ScanGAN360 [37] 60.35 50.73 74,644 50,635 0.037 0.302
ScanDMM [53] 57.22 42.80 88,513 52,559 0.049 0.475
DiffGaze (Ours) 55.84 39.40 69,381 44,065 0.043 0.439

Salient360! [42, 43]

Human 99.40 † 76.44† 28,657† 15,998† 0.092† 0.479†

ScanGAN360 (1Hz) [37] 94.81 47.53 24,782 14,223 0.040 0.381
ScanDMM (1Hz) [53] 96.32 42.73 24,347 12,765 0.040 0.464

Saltinet [1] 105.88 55.45 44,626 25,623 0.009 0.177
DeepGaze III [30] 100.87 83.69 33,390 25,573 0.041 0.255
CLE [3] 100.11 79.06 32,535 16,020 0.088 1.046
ScanGAN360 [37] 94.62 53.79 25,281 15,261 0.036 0.324
ScanDMM [53] 96.71 45.26 32,674 14,550 0.045 0.552
DiffGaze (Ours) 98.85 42.20 25,238 12,641 0.038 0.535

† Scanpaths are not compared with themselves

MIT1003 [26]. The remaining fixations formed the scanpaths for our analyses. For the Salient360!
dataset, we used the provided scanpaths as ground truth.
Baselines. In addition to the two baselines trained on fine-grained gaze sequences, we also

compared our method with the state-of-the-art scanpath prediction methods, Saltinet [1], DeepGaze
III [30], CLE [3], and ScanGAN360 [37] and ScanDMM [53] which trained on 1Hz gaze sequences.
For Saltinet, DeepGaze III, ScanGAN360 (1Hz), and ScanDMM (1Hz), we used the pre-trained
weights provided by the authors. Since CLE generates scanpath on given saliency maps, we applied
BMS360 [33] to obtain the saliency maps. For CLE, Saltinet, and DeepGaze III, the number of
generated fixations has to be pre-defined. Therefore, we set the number to the mean number of
fixations of each dataset for these methods. Moreover, to link with 1Hz gaze sequence prediction,
we trained a 1Hz DiffGaze model using the processed 1Hz Sitzmann dataset provided by ScanDMM
authors [53] with the same setting as described in 4.2. Moreover, we compared the 1Hz human
ground truth of the Sitzmann dataset with the ground truth scanpaths extracted from human gaze
sequences. Note that ScanDMM authors compared their predicted scanpaths with head movements
instead of the ground truth scanpaths1 of the Salient360! dataset [53], we compared all predicted
scanpaths with ground truth scanpaths in both datasets.

1https://github.com/xiangjieSui/ScanDMM/issues/1
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EvaluationMetrics. Following [53], we used Levenshtein distance (LEV), dynamic time warping
(DTW), and recurrence measure (REC) as evaluation metrics. REC measures the proportion of gaze
points that are close to each other in two scanpaths. We opted for two degrees of visual angle as
the threshold following [43]. All metrics and the human baseline [62] were computed as described
in Section 4.3.
Quantitative Results. Table 4 shows 1Hz human gaze sequences exhibit superior metrics

compared to scanpaths extracted from fine-grained human gaze sequences. This suggests that
the scanpath prediction task is oversimplified by downsampling the human gaze sequence to
1Hz. Consequently, on the Sitzmann dataset, the models trained with data have higher upper-
bound performance than the actual human scanpath. Therefore, 1Hz models have overall good
performance. For a fair comparison, we excluded the 1Hz models from other evaluations. However,
it is worth noting that, even if generating fine-grained human gaze data is a more difficult task
compared with 1Hz data generation, the scanpaths extracted from DiffGaze’s generated fine-
grained gaze trajectories still outperform those 1Hz models on best DTW, best REC, and best LEV.
And it rivals those 1Hz models in other metrics.

DiffGaze also shows promising results compared to scanpath prediction models and other
baselines on both datasets. On the Sitzmann dataset, which has only three test images, DiffGaze
achieves the best results and reaches human performance on LEV and DTW. On Salient360!, which
has 85 test images, DiffGaze outperforms all the baselines and matches human performance on
LEV and DTW, showing its strong generalisation ability in cross-dataset evaluation. Interestingly,
DiffGaze has slightly higher LEV and DTW scores than human agreement, which suggests that
DiffGaze produces more consistent scanpaths than human observers. As for REC, CLE has the
best performance on both datasets, because REC only measures the spatial similarity of fixations
and ignores the temporal aspect. CLE generates scanpaths from saliency maps, which gives it an
advantage in capturing salient regions. However, DiffGaze still shows comparable performance to
models without saliency prior, demonstrating its ability to generate spatially accurate fixations.

Qualitative Results. Figure 5 shows example scanpaths obtained from generated fine-grained
gaze sequences of DiffGaze, ScanGAN360, and ScanDMM. It can be observed that ScanDMM tends
to produce fixations that are concentrated within a limited area, thereby failing to replicate the
exploratory nature of human gaze. Conversely, the scanpaths generated by our method exhibit
greater resemblance to the human ground truth in terms of the number, location, and sequence
of fixations. For example, in the Museum scene, our method successfully emulates the shift in
human attention between the crowd on the left and the painting on the right. While the scanpaths
produced by ScanGAN360 display a pattern akin to ours, Table 3 reveals that the average duration
of fixations for ScanGAN360 is significantly reduced compared to human fixations. In contrast,
the distribution of fixation durations for DiffGaze aligns closely with that of humans. Overall, the
scanpaths derived from the gaze sequences generated by DiffGaze demonstrate a higher degree of
similarity to human scanpaths compared to the other two baseline methods.

4.5 Saliency Prediction
The gaze sequence and scanpath evaluation focused on the temporal perspective. To better evaluate
the generated fine-grained gaze sequence spatially, we evaluated the different gaze sequence
generation approaches, DiffGaze, ScanGAN360 [37], and ScanDMM [53] on the saliency prediction
task. We used each method to generate 1,000 30Hz gaze sequences and applied the eye event
detection algorithm mentioned in Section 4.3 to obtain gaze fixations. Similar to subsection 4.4,
we filtered out all the fixations with duration less than 150ms. We then used the script provided
by Sitzmann et al. [50] to convert the fixation maps into continuous saliency maps by applying a
Gaussian filter with a standard deviation of 1° of visual angle.
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Baselines. Our method was trained to generate fine-grained gaze data and was not optimised
for saliency prediction. Saliency prediction is a downstream task to evaluate generated fine-grained
gaze trajectories. ScanDMM [53] claimed state-of-the-art saliency performance because they used a
very large Gaussian kernel size (19 pixels) on a small image size (128× 256) to generate the saliency
map. We followed the process outlined in the Sitzmann dataset [50], using 1° of visual angle (roughly
corresponding to the foveal area) as the kernel size on the image size, which corresponds to 0.71
pixels on a (128 × 256) image. For a fair comparison, we did not compare to deep learning saliency
prediction baselines. Instead, we report results using BMS360 [33] and GBVS360 [33], which are
two bottom-up saliency models that perform well compared to the state-of-the-art methods in
previous saliency prediction works [6, 38, 53].
Evaluation Metrics. We report performance using five common metrics: Area under the

ROC Curve (AUC), Normalised Scanpath Saliency (NSS), Similarity (SIM), Pearson’s Correlation
Coefficient (CC), and Kullback-Leibler divergence (KL). All metrics were calculated on image size
(4096, 8192) for Sitzmann and (1024, 2048) for Salient360!, respectively.

Quantitative Results. Table 5 shows the results for saliency prediction. Our method achieves
superior performance over ScanDMM and ScanGAN360 on all evaluation metrics on the Sitzmann
dataset. On Salient360!, our method outperforms the two baselines on four out of five metrics,
except for KL. Moreover, DiffGaze ranks second in AUC on both datasets and improves the AUC of
GBVS360.
Qualitative Results. Figure 6 shows sample saliency maps obtained from generated 30Hz

gaze sequences of DiffGaze, ScanGAN360, and ScanDMM. See supplementary material for more
examples. For instance, in the Gallery scene, our method assigns high saliency to the sculpture and
most of the paintings, while the other methods mainly focus on the sculpture and the rightmost
painting. Similarly, in the Robots scene, our method correctly identifies the salient regions, such as
the largest robot and the robot in front of the cabin, while the other methods either miss them or
include irrelevant regions, such as the whole cabin. These results demonstrate that our method can
better capture the spatial location of human attention than the baselines.

4.6 Ablation Study
We conducted an ablation study to understand how the spatial and temporal Transformers in

DiffGaze contribute to gaze sequence generation. As DiffGaze is a generative model, we evaluate
the overall distribution of generated gaze sequences rather than individual sequences. Following
the approach in subsection 4.5, we compared the aggregated saliency maps produced by the full
model and its ablated variants (see Table 6). The full version of DiffGaze outperforms its ablated
variants on four out of five metrics on the Sitzmann dataset, and on three out of five metrics on
the Salient360! dataset. This suggests that the dual-Transformer architecture allows the model to
capture a more accurate distribution of gaze data.

Qualitative results are shown in Figure 7 and in the supplementary material. These results show
that removing the temporal Transformer leads to poor modelling of gaze dynamics: the model
produces fixations mostly at the centre of the image, lacking temporal variation. When only the
temporal Transformer is used, the model generates more sparse fixations across the scene, but fails
to focus on key salient regions, unlike real human gaze data. In contrast, the full DiffGaze with
both spatial and temporal Transformers produces fixation distributions that more closely match
the ground truth. This highlights the complementary roles of the two components: the temporal
Transformer is essential for capturing the sequence and timing of gaze behaviour, while the spatial
Transformer helps the model attend to visually salient regions in the scene.
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Fig. 6. Qualitative comparison to saliency prediction models in four scenes. From left to right: scanpaths
obtained by a human observer, generated saliency maps obtained by ScanGAN360, ScanDMM, and the
proposed model. From top to bottom: the Room and the Robots from Sitzmann dataset, the Mall and Gallery
from Salient360! dataset.

Table 5. Evaluation of saliency methods on Sitzmann and Salient360! dataset. The best results of each dataset
are shown in bold.

Dataset Method NSS ↑ CC ↑ AUC ↑ SIM ↑ KL ↓

Sitzmann [50]

BMS360 [33] 1.175 0.509 0.883 0.421 0.225
GBVS360 [33] 1.144 0.567 0.597 0.503 0.057

ScanDMM [53] 0.662 0.253 0.548 0.331 0.346
ScanGAN360 [37] 0.810 0.272 0.419 0.348 0.343
DiffGaze (Ours) 0.903 0.407 0.812 0.358 0.318

Salient360! [42, 43]

BMS360 [33] 0.243 0.570 0.737 0.608 2.146
GBVS360 [33] 0.201 0.562 0.601 0.583 1.609

ScanDMM [53] 0.149 0.368 0.454 0.476 2.468
ScanGAN360 [37] 0.119 0.260 0.411 0.400 3.337
DiffGaze (Ours) 0.176 0.487 0.638 0.559 2.861

4.7 Runtime Evaluation
To assess the efficiency of DiffGaze (17.9M parameters) in generating fine-grained human gaze
sequences, we conducted a runtime evaluation comparing it against two baseline methods: Scan-
GAN360 (19.9M parameters) and ScanDMM (4.7M parameters). We measured the time required
to generate a 30-second gaze sequence at 30Hz on a single NVIDIA Tesla V100 GPU. To reduce
potential bias, we repeated each method 10 times and reported the average runtime. On average,
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Table 6. The saliency prediction results of the ablation study on DiffGaze components on Sitzmann and
Salient360! dataset. The best results are shown in bold. TT: Temporal Transformer, ST: Spatial Transformer.

Dataset Method NSS ↑ CC ↑ AUC ↑ SIM ↑ KL ↓

Sitzmann [50]
DiffGaze w/o TT 0.487 0.290 0.446 0.266 0.317
DiffGaze w/o ST 0.879 0.356 0.794 0.344 0.347
DiffGaze (Ours) 0.903 0.407 0.812 0.358 0.318

Salient360! [42, 43]
DiffGaze w/o TT 0.080 0.275 0.433 0.251 2.475
DiffGaze w/o ST 0.185 0.455 0.605 0.548 2.934
DiffGaze (Ours) 0.176 0.487 0.638 0.559 2.861

DiffGaze (Ours)w/o Spatial Transformerw/o Temporal TransformerGround Truth
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om

Fig. 7. Qualitative comparison between DiffGaze and its ablated versions in saliency prediction.

DiffGaze required 0.82 seconds to generate a full sequence, compared to 0.63 seconds for Scan-
GAN360 and 1.37 seconds for ScanDMM. The slower performance of ScanDMM can be attributed
to its Markov chain-based approach, which generates each gaze point sequentially based on the
previous observation state. In contrast, both ScanGAN360 and DiffGaze generate the entire se-
quence, resulting in faster inference times. These results suggest that DiffGaze balances generation
speed and modelling fidelity, making it a practical solution for synthesising fine-grained gaze data
in interactive systems.

5 DISCUSSION
5.1 Fine-grained Gaze Sequence vs. Discrete Scanpath in Real-world Applications
Previous works on scanpath prediction have focused on generating discrete sequences of fixations
on 360◦ images. In contrast, we propose the first method to model and generate fine-grained
gaze sequences that resemble the raw eye tracking data captured by real eye trackers. Scanpaths
only contain gaze fixation information, while fine-grained gaze sequences include both fixation
and saccade signals. Therefore, fine-grained gaze sequence generation can benefit not only the
applications that rely on scanpath prediction, such as saliency prediction [37, 53] and image quality
assessment [53], assisting data chart [61] and user interface design [21, 22].

For example, HCI and computer graphics researchers have long sought to generate fine-grained
gaze sequences for digital human animation [55]. Existing methods rely on other inputs like head
movements [18, 19] or speech [32]. Our method, DiffGaze, enables high frame rate animation of
natural eye movements on a virtual human in a given scene. Compared to scanpath prediction
approaches, it mimicsmore fine-grained human exploration of the virtual environment. Additionally,
fine-grained gaze sequence generation holds promising potential for immersivemedia authoring and
personalised content adaptation. Recent advances in 360◦ image synthesis, such as conditional scene
generation for virtual interior design [48], could benefit from realistic gaze data to guide camera
placement, highlight focal areas, or simulate user attention during design previews. Similarly,
personalised visual content rendering methods—like the dual-level colour grading framework
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for 360◦ images [65]—could leverage individual gaze patterns to dynamically adjust tone and
contrast in attention-relevant regions, enhancing both visual comfort and narrative emphasis. By
incorporating high-frequency gaze data, systems can adapt to nuanced viewer preferences and
perceptual cues, offering a pathway toward gaze-driven personalisation in immersive environments.
Another potential application of DiffGaze is to synthesise large-scale eye tracking datasets on 360◦
images, which are difficult to collect due to the labour-intensive and privacy-compromising data
collection process. Such datasets can help analyse human gaze behaviour in immersive environments
and facilitate various gaze-based downstream tasks, such as eye event detection [66] or activity
recognition [31] in VR. Moreover, contemporary commercial VR headsets often suffer from limited
battery life. Recent research proposed a gaze-contingent system that reduces pixel luminance
outside users’ field of view to conserve power [13]. Our method provides fine-grained, realistic
simulations of human gaze data for VR headsets without built-in eye trackers. Similarly, areas
without predicted gaze samples can have reduced luminance to save power while maintaining
users’ perceptual fidelity.

5.2 Diffusion Model vs. Other Methods
We compared our diffusion-based model with two leading scanpath prediction methods—a GAN-
based approach [37] and a Deep Markov Model (DMM) [53]—as strong baselines. As demonstrated
in Figure 3 and the supplementary material, both the GAN-based and DMM-based methods cannot
generate plausible fine-grained human gaze data. This is due to the significantly higher complexity
of fine-grained gaze data than scanpaths that consist of only discrete fixation events. Scanpath
prediction models only need to account for fixation locations. However, fine-grained gaze sequence
generation models must account for various human eye movement events, including fixations and
saccades. Moreover, generating a fixation involves predicting all raw gaze samples that form the
fixation, not just a single location. This requires a model to generate numerous gaze samples with
minimal location shifts to form a fixation, then perform several saccades to the next fixation after a
human-like duration, and repeat this process.

Different individuals may exhibit different eye movements on the same image, which complicates
the training of an effective discriminator in ScanGAN360. Furthermore, ScanGAN360 incorporates
the spherical DTW with the loss function of the GAN generator, which directly penalises the
difference between the generated samples and one ground truth. Given that one image can have
multiple, vastly different ground truths, ScanGAN360 exhibits an unusual pattern in modelling
fine-grained eye movement data. DMMmodels predict the likelihood of the next gaze location based
on the current state information. As most gaze samples in fine-grained gaze sequences belong to
fixations, these samples’ pattern has a higher likelihood in the prediction. Since the displacements
of these samples are rare, ScanDMM tends to generate large clusters as a result (see Figure 3).

Our diffusion-based approach overcomes these limitations by modelling the complex distribution
of fine-grained gaze data through a forward and backward process. Compared with ScanGAN360,
our method does not require a discriminator or a distance metric, which makes it easier to train and
more robust to different ground truths. Moreover, unlike ScanDMM, our method simultaneously
generates the whole gaze sequence, enabling it to capture human gaze behaviour’s global spatial
and temporal coherence. We demonstrate that our method can generate fine-grained gaze sequences
that match the statistics and characteristics of human gaze data and are visually indistinguishable
from real human gaze sequences.

5.3 Performance Metrics
Ourwork also sheds light on the challenge of evaluating the performance of attentionmodels, as well
as the shortcomings of widely used evaluation metrics and their discrepancies from human visual
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judgement. As discussed in subsection 4.3, human agreement performs poorly on selected time-
series metrics due to the significant differences between real human gaze sequences. Additionally,
we observed disagreements between the Levensthein distance and qualitative evaluation results.
Specifically, ScanDMM performed the best in the best LEV on Salienct360! (see Table 2) but the
generated gaze samples are visually implausible and received very low user ratings for realism in
our user study. Interestingly, we also observed the disagreement between the qualitative results
of generated gaze sequences and scanpath metrics. As shown in Table 4, the extracted scanpaths
of ScanDMM and ScanGAN360 achieve good overall performance. Especially, for ScanGAN360,
the generated 30Hz gaze sequences are entirely visually unrealistic according to our user study
result. This indicates that evaluating the scanpaths extracted from generated gaze sequences cannot
reflect the method’s performance on fine-grained gaze sequence generation. Statistics at the eye
movement level (Table 3) and the user study results align with our visual intuitions. However, the
spatial and temporal aspects are not shown in statistics. Besides, having a user study to evaluate a
large scale of generated fine-grained trajectories is highly impractical. Therefore, we see an urgent
need for designing effective gaze metrics on 360◦ images in future work.
Misalignment in the scale of evaluation metrics. Notably, a misalignment was identified

between the two previous in 1Hz scanpath evaluation in ScanDMM [53] and ScanGAN360 [37]. As
the image resolution used for computing the metrics was not reported in either study, we computed
metrics across various resolutions. Our findings indicate that while the metrics are sensitive to
image resolution, alterations in image size do not impact the overall performance ranking. Although
the scale of metrics reported in this paper differs from previous works, our method consistently
outperforms baseline methods across all image resolutions.

5.4 Limitations and Future Work
The Sitzmann [50] and Salient360! [42, 43] datasets contain only 107 images, and we used 19
to train DiffGaze. The limited training data size may make the generalisability of our model
unclear. However, these two are the only public 360◦ datasets providing raw gaze data. Once the
generalisability of DiffGaze is confirmed, DiffGaze can then be modified to generate fine-grained
gaze sequences for other tasks, e.g. visual search [10, 64], visual question answering [8], and natural
images [4, 26]. However, among these, only the MIT1003 dataset [26] provides raw gaze data.
More datasets with raw eye tracking data would enhance models like DiffGaze. We encourage the
research community to make such data public.

In addition, since running time-series metrics on high-frequency gaze data is time-intensive, we
only tested our method in generating 30Hz gaze trajectories. Future work will explore our model’s
performance on higher sampling frequencies to see whether it can model other eye events. To
detect certain types of eye events, such as microsaccades, prior work [40] suggests using the highest
available sampling frequency, such as 1,000Hz, to capture the eye tracking data. However, current
360◦ image eye tracking datasets typically have a maximum sampling frequency of 240Hz. We
anticipate the availability of more high-frequency VR eye tracking datasets to enhance fine-grained
gaze sequence generation. In this work, we focused on bottom-up (stimulus-driven) modeling of
fine-grained human gaze behaviour. For future work, we plan to explore top-down (intention-driven)
gaze behaviour modeling to understand how users’ intentions influence generated fine-grained
gaze patterns.

6 CONCLUSION
This paper introduced DiffGaze, a conditional diffusion model for generating realistic and diverse
fine-grained human gaze sequences in 360◦ environments. This method significantly advances
the field by moving beyond the prediction of scanpaths to model more complex eye movements.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2025.



111:20 Jiao et al.

The effectiveness of DiffGaze was demonstrated through rigorous evaluation on two 360◦ image
datasets across three different tasks. Not only did DiffGaze outperform previous methods in terms
of gaze sequence generation, scanpath prediction and saliency prediction, but it also showed
comparable performance with human baseline, underscoring its ability to simulate human-like gaze
behaviour. These results highlight the potential of DiffGaze to facilitate further research in gaze
behaviour analysis in immersive environments. By providing high-quality simulated eye-tracking
data, DiffGaze opens up new possibilities for human-computer interaction and computer vision
applications, paving the way for more intuitive and immersive user experiences.
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